Workshop on GPS Protection and Receiver Performance

Marc Weiss, Ph.D.

NIST Time and Frequency Division

June 20th, 2014

Key Points

- GPS for time requires calibration of the antenna/cable/receiver delays unlike Navigation/Positioning
- There's a trade-off between time accuracy and susceptibility to interference
- ITU-T standard G.8273.1 defines a Grand Master clock with +/- 100 ns against UTC – essentially must be a GNSS receiver system

Time from GPS Requires Calibration

- Delay through the analog components
 - Antenna
 - Antenna cable
 - Receiver front end
- Processing delay in Digital Signal Processor
 - Delay can be quite large or even negative
- Calibration only as valid as the long-term stability of the delay
- Antenna cable must have good impedance matching or can cause large time errors

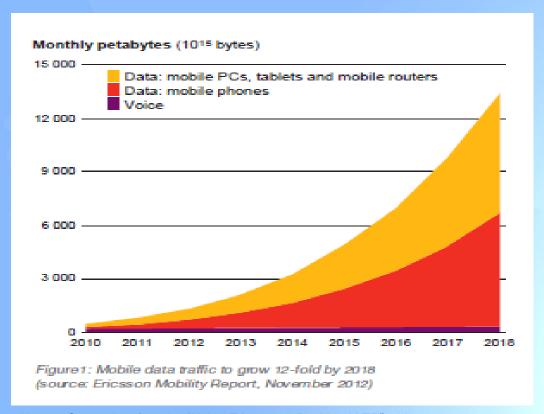
Antenna Cable Impedance Matching Essential for Accurate GPS Time

Bad connector in neutrino experiment created a 60 ns time error

Mis-matches can cause errors of 10's to 100's of ns

Antenna Filter/LNA Issues

- In general, a narrower pass band filter with a sharper roll-off has a larger delay
 - Less vulnerable to interfering signals
 - Delay can vary many 10's of ns or more with aging and temperature
- ns-level accuracy needs the full 20 MHz band, leaves the receiver open to neighboring band interference



Drivers for UTC Time and Phase in LTE

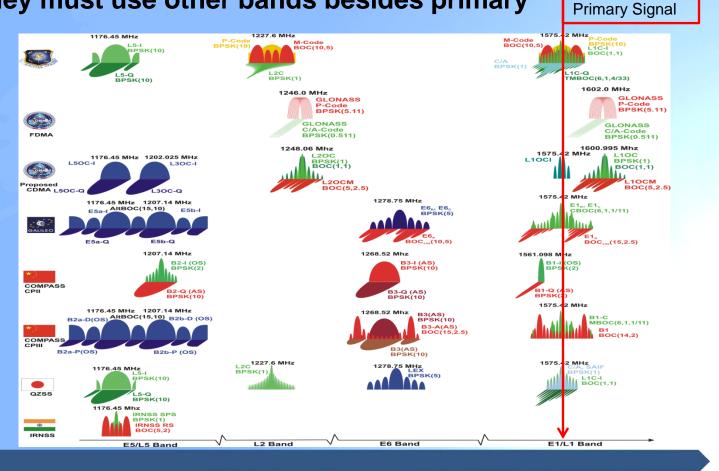
- LTE Advanced features optimize use of the spectrum
 - elCIC (Enhanced Inter-cell Interference Coordination)
 - CoMP (Coordinated Multipoint) Network MIMO)(Multiple Input Multiple Output)
- LTE TDD (Time Division Duplex)

Trend: Mobile Bandwidth Growth

Note 1: Source is Infonetics "Using Ethernet to Backhaul LTE" white paper

- Demand for bandwidth is exponentially growing
- Available bandwidth is limited
- Tighter
 synchronization
 allows for better use
 of bandwidth

LTE Synchronization Requirements


Application	Frequency	Time	Backhaul Spec
LTE (FDD)	±50 ppb	N/A	±16 ppb (G.8261.1)
LTE (TDD)	±50 ppb	±1.5 μs (< 3km radius) ±5 μs (> 3km radius)	±16 ppb (G.8261.1) ±1.1µs (G.8271.1)
LTE-A MBSFN	±50 ppb	±1 to 5 μs implementation dependent	±16 ppb (G.8261.1) ±1.1µs (G.8271.1)
LTE-A CoMP Network MIMO	±50 ppb		
LTE-A elClC HetNet Coordination	±50 ppb		
Small Cells	±100 ppb	N/A (FDD) ±1.5 μs (TDD) ±1 to 5μs (elClC)	±33 ppb ±1.1μs (G.8271.1)
Home Cells	±250 ppb	N/A (FDD) ±1.5 μs (TDD)	±100 ppb ±1.1µs (G.8271.1)

ITU-T Recommendations (Packet Sync – Phase/Time) – work in progress

- ITU T Recommendation G.8273.1, Telecom Grand Master specification, includes 100 ns accuracy requirement
- ITU T Recommendation G.8273.3, Telecom Transparent Clock specification
- ITU T Recommendation G.8273.4, Assisted Partial Timing Support Slave Clocks (APTSC)
- ITU T Recommendation G.8275.2, IEEE-1588 profile for time with partial support from the network
- ITU T G.Sup, Supplement to capture simulation model and results

GNSS Spectrum: For GNSS to backup GPS, they must use other bands besides primary

