Workshop on GPS Protection and Receiver Performance

Motorola Solutions, Inc. Greg Buchwald

June 20th, 2014

GPS Disruption of Service Impact Upon Public Safety and Associated Services

- Subscriber Units (Handheld Subscriber Units, Accessories, Surveillance, CAD)
 - Disillusion of location accuracy Examples:
 - Officer-down location: Response / backup support delay impact
 - Traffic stop location: may be extremely important during escalated situations
 - "Ankle bracelet" tracking disrupted; a-priori knowledge of outage areas may be exploited
 - E911 calls / reporting response delays; location inaccuracies or outages
 - Potential impact to location stamping of voice, data and video recordings used as evidence

Base Station

- Present Day Concern: Simulcast Systems
 - Accurate timing important to self-interference mitigation: Immediate alarm sent to dispatch or control point if tracked and locked satellites drops below threshold level
 - Continued interference and loss of timing may cause site disablement; differential multi-site timing degradation over time determines severity and eventual outage.

Primary Interference Scenarios

- 1) OOBE into GPS receiver can only be corrected at L-band transmitter
 - B24 proponent added sufficient filtering to mitigate (2011)
- 2) GPS receiver **blocking** <u>can only be fixed at receiver</u>
 - Function of GPS receiver design and,
 - Distance between Band 24 BR and Victim Receiver
 - Inter-Modulation Product-induced Interference.
 - LNA compression is primary cause; RX filtering and reasonable guard-bands help alleviate issues

Motorola Solutions Subscriber GPS Evolution

Device Under Test (Test Results: GPS @ -142dBm/2MHz LTE Terrestrial L-band Signal)	Max LTE Level; RX Input	Bore Site	Live Sky Results
Gen 2006 PS GPS Microphone Accessory, Filtered LTE@1550MHz; Radiated w/GPS @ -142dBm	-36dBm	~1000 meters	
Gen 2007 Professional / Commercial Radio HH; Filtered LTE@1550MHz; Radiated w/GPS @ -142dBm	-37dBm	1100 meters	-
Gen 2009 PS HH; Filtered LTE @1550MHz; Radiated w/GPS @ -142dBm	-35dBm	850 meters	610 meters
Latest Gen PS HH; Filtered LTE @1550MHz; Radiated w/GPS @ -142dBm	-22dBm	190 meters	26 meters

- "Long hanging fruit" improvements have been made as have moderate cost-added improvements.
- Already have a small "hit" to GPS sensitivity; additional filtering escalates losses rapidly, temperature coefficient issues arise, practical limitations become paramount
- Deployed PS systems <u>last many years</u>; design-to specifications for L-band adjacent services must be known well in advance of system deployment.

Motorola Solutions Infrastructure: Consistent Upgrade

Tast Desults CDS @ 1/2dDm/2MUz | TE Tarrestrial | hand Signal

Device Under Test	LTE Level;	Distance A;	Distance B;		
	RX Input	Bore-sight	-20dB		
Third Party Receiver w/ External GPS Antenna / Standard LNA; Radiated Test	-47dBm	3800 meters	380 meters		
Third Party Receiver w/External GPS Standard Antenna / LNA + 16dB Line	-35dBm	850 meters	85 meters		
Loss; Radiated Test					
Third Party Receiver w/External GPS High Rejection (BPF) Antenna / LNA +	-35dBm	4 meters	<1		
16dB Line Loss; Radiated Test					
GTR Site Controller / GPS Reference w/External GPS RX in Head; Radiated	-22dBm	2 meters	<1 meters		
Test (High Rejection GPS RX Head)					

Mitigation Methods

- Replace External Antenna / LNA equipment utilizing high OOBE rejection SAW filters (added filters) and well-designed distributed gain
 - Downside: Additional Noise Figure; loss of RX Sensitivity (~2dB)
- Add additional filtering between Antenna / LNA and receiver
 - Downside: Antenna-mounted LNA 1dB IM spec must be sufficient; generally more \$\$\$

Cost: All require site visit, upgraded equipment purchase; equipment procurement and, for MSI-Approved equipment an Internal Qualification Process

In Summary:

- Proactive steps have already been taken to improve performance of GPSenabled MSI Astro Public Safety products:
 - Since 2011, forward-looking steps have already been taken to improve performance of GPS-enabled Public Safety product offerings with future rational terrestrial L-band spectrum use taken into consideration
 - However, considerable legacy equipment exists; long equipment life-cycles are common in PS
- Reasonable band-plans for eventual terrestrial use of L-band must be developed consistent with realizable GPS receiver performance expectations. Sufficient Guard-bands, UL/DL choice, etc.
- GPS is critical to Public Safety but, as civilian devices, they generally only utilize the narrow BW Coarse Acquisition (CA) code
 - Defense, Aviation, and Precision Agriculture utilize information extracted from the full 20MHz channel.
 - If their needs are met, so will those of Public Safety (but not vice-versa)

