

Update on DTS Test Procedures & 802.11ax

Dusmantha Tennakoon

Average Power Measurements for Special Cases

- Several methods for making average measurements for spurious emissions are available provided (see KDB Q3 for full requirements):
 - Emissions fall in restricted bands
 - ii. Emissions are temporally related to fundamental
 - iii. Duty cycle is hardwired

If the above are satisfied the following methods maybe used:

- a) Duty cycle correction to a Peak measurement
- b) Use of an Average detector while EUT transmitting in an operational duty cycle
- c) Using an Averaging technique while EUT transmitting continuously and then correcting for operational duty cycle

802.11ax

Key Features:

- 1. Operates in the 2.4GHz & 5 GHz bands
- 2. Backwards compatible with 802.11a/b/g/n/ac
- 3. Increased avg. throughput (up to 4X) per user in dense environments
- Allows for single User (SU) or Multi User (MU) operation through OFDMA (legacy 802.11ac MU-MIMO is also supported)
- 5. Longer OFDM symbols
- 6. Supports MCS-10 & MCS-11(1024-QAM)
- 7. Improved power saving techniques

Resource Units (RU)

- 802.11ax adds SU or MU operations using OFDMA. Legacy MU-MIMO also supported (using OFDM).
- OFDMA employs multiple subcarriers. The subcarriers are divided into several groups where each group is denoted as a Resource Unit.
- Following RUs are defined for DL & UL transmission:
 - 26-tone RU
 - 52-tone RU
 - 106-tone RU
 - 242-tone RU
 - 484-tone RU
 - 996-tone RU
 - 2x996-tone RU

A OFDMA transmission can carry a mixture of 26, 52, 106, 242, 484 and 996-tone RUs.

RU Allocation - 20 MHz Fully loaded

The following are different RU configurations (but not all) for a 20 MHz channel.

FCC Testing

- The data represented here are for reference only and not intended to show performance or compliance to any requirements.
- Test results are based on vendor specific implementations during testing and measurements were made with test software.
- The devices operated at different RF power levels during testing and may not reflect realworld values.

40 MHz channel - sample measurements

Fully loaded (52+52+26+106+52+52+26+106):

Partially loaded (106+26.....26+106):

Results (Device A) – sample measurements

Results (Device A) – sample measurements

Results (Device B) – sample measurements

Results (Device B) – sample measurements

Observations

Tested two chips so far. Preliminary results:

- Partially loaded configurations (contiguous and noncontiguous) appear to have highest PSD (approx. 3 dB higher than fully loaded) when tested at same power levels.
- OOBE might be higher when edges of a channel are loaded due to spectral regrowth (see plot on page 8).
- MCS and Guard Interval values do not appear to make a difference in RF levels.
- Investigation of spatial stream configurations and DFS still ongoing.

Interim Guidance

- Test using one of the lower MCS values (ex. MCS 0) and any one GI
- Measure PSD under fully loaded configurations (PSD_{full}) and partially loaded configurations (PSD_{par}). For partially loaded configurations test at least center (contiguous) and edges (non-contiguous).
- Determine $\delta = PSD_{par} PSD_{full}$.
- If δ> 0 and PSD_{par} can be reduced to PSD_{full} all testing can be done under fully loaded conditions. Spot check for band edges under partial configurations.
- Otherwise, test both fully loaded and partially loaded configurations in its entirety.

We will update KDB in the future once our testing has been completed.