

Discussions on SAR Measurement Issues

FCC / OET
Laboratory Division
October 2008

TCB Workshop

Topics

Basic Measurement Issues

- SAR system & test requirements for current generation transmitters
 - early generation handsets vs. today's products & technologies
- some labs still seem unfamiliar with the SAR basic methodologies

PBA Considerations

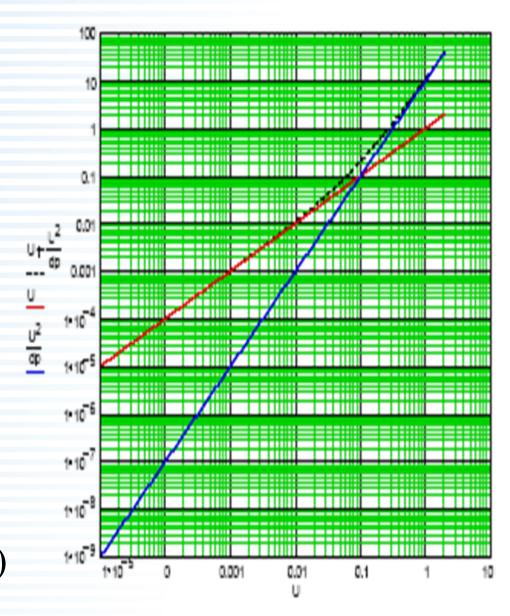
- to avoid invalid test results: inquire & resolve test issues before testing
 - HSPA: power & SAR measurement issues
 - Wi-Max: test methodology vs. test configuration problems
 - other new products & technologies have similar concerns
- Technologies & Products with Defined SAR test procedures
 - there are still issues and concerns in applying these procedures correctly

Other Miscellaneous Concerns

- test report inconsistencies and lack of explanations
- not adhering to the required procedures
- oversights in both generating & reviewing test reports

Basic Measurement Issues

- duty factor & PAR issues are wireless technology specific
- SAR scan region and resolution can be device dependent
- device holder perturbation may vary with DUT dimensions
- test device positioning may depend on phantom & DUT
- SAR and power drifts are different
- Z-axis scans problems can disqualify test results
- tissue recipe, dielectric parameter & dipole problems
- probe calibration & system validation issues
- issues with inconsistent power measurements
- improper measurement uncertainty analyses

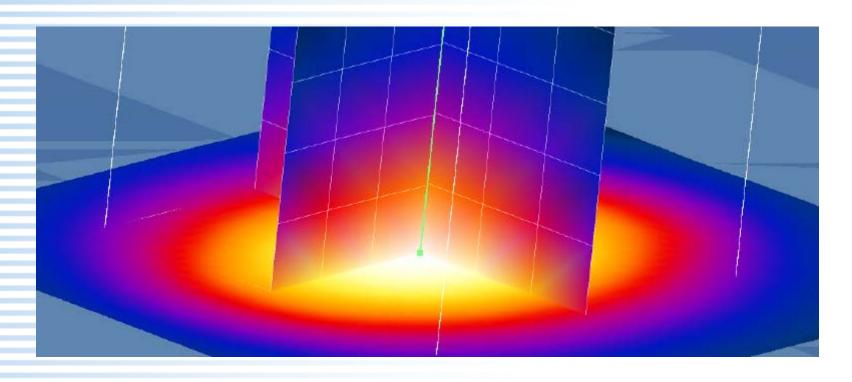


$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

For Periodic signals

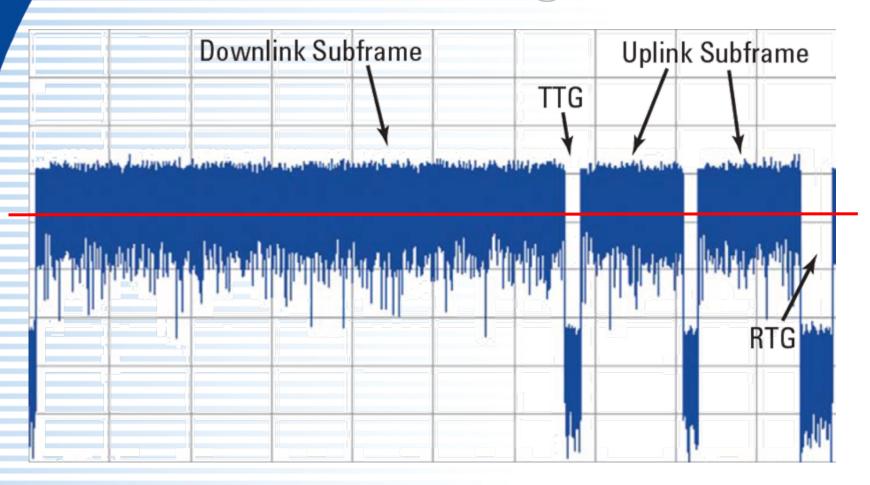
duty factor = t/T

crest factor $(cf) = \sqrt{(T/t)}$

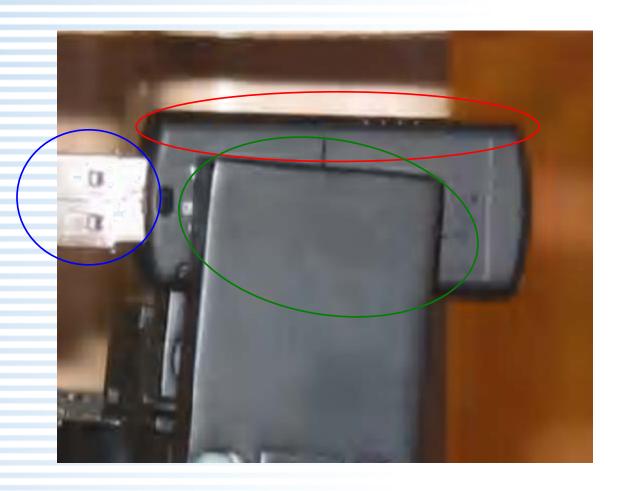


$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$


$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$



PAR & Crest Factor of Non-Periodic Signals

Scan Resolution & Device Holder Perturbation

Scan Region & Device Positioning

Measurement Data

Area Scan: 5x5x1

x = 12mm, y = 12mm, z = 4mm

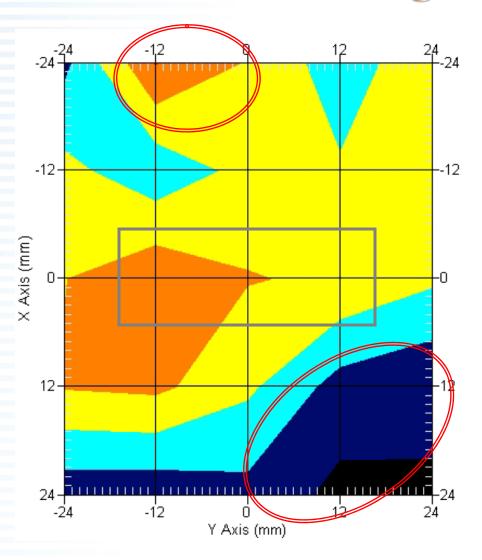
Zoom Scan: 5x5x8

x = 8mm, y = 8mm, z = 4mm

Power Drift-Start: 0.044 W/kg

Power Drift-Finish: 0.083 W/kg

Power Drift (%): <u>88.887</u>

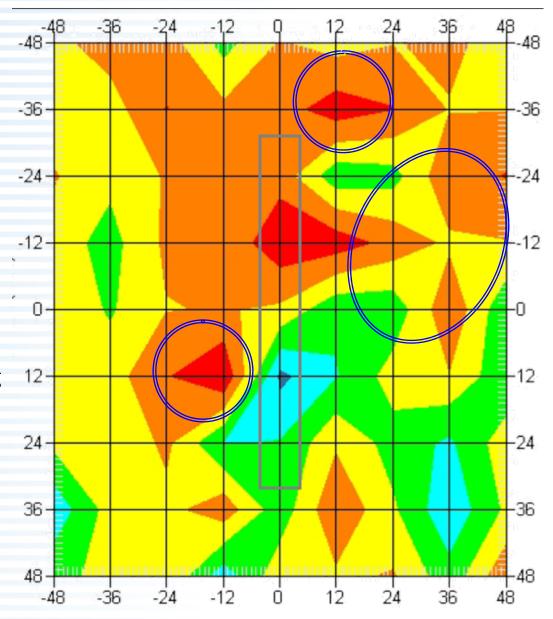

DUT Position: Antenna 180°

1-g SAR: 0.172 W/kg

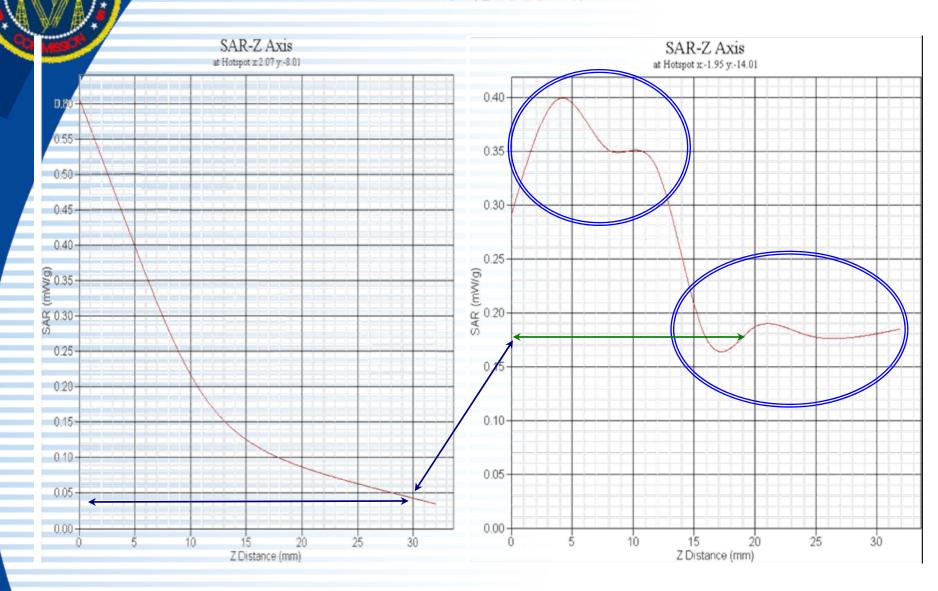
10-g SAR: 0.073 W/kg

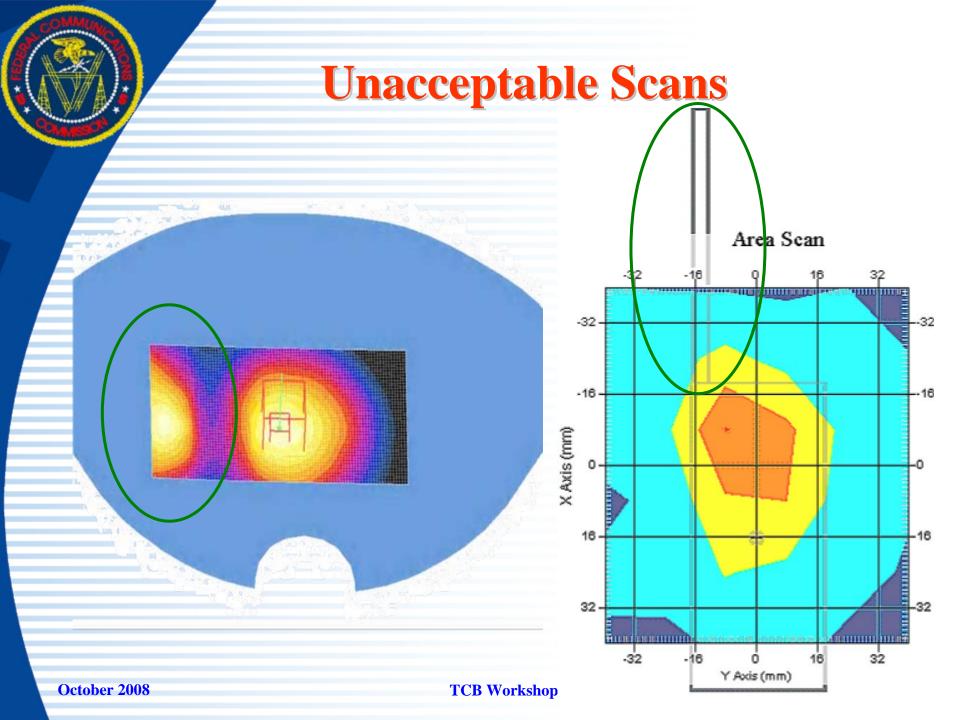
Area Scan Peak: 0.182 W/kg

Zoom Scan Peak: 0.380 W/kg



1-g SAR: 0.397 W/kg


10-g SAR: 0.202 W/kg


Area Scan Peak: 0.590 W/kg

Zoom Scan Peak: 0.756 W/kg

Z-Axis Scans

Tissue Recipes

Ingredients		Simulat	ing Tissue
ingredients		835 MHz Muscle	1900 MHz Muscle
Mixing Percentage			
Water		52.40	69.91
Sugar		0.00	29.96
Salt	Salt		0.00
HEC		1.40	0.13
Bactericide		0.10	0.00
DGBE		(1.00)	0.00
Dielectric Constant Target		55.20	53.30
Conductivity (S/m)	Target	0.97	1.52

October 2008 TCB Workshop 12

Other Measurement Issues

- listed impossible tissue recipes
- used incorrect target dielectric parameters
- tested incorrect dipoles
- \bullet probe calibration used \pm 10% tissue parameters
- system validation issues
- measurement uncertainty issues
- inconsistent power measurements

PBA Considerations

Resolve testing issues before conducting tests

incorrect tests can lead to invalid results; therefore, unacceptable

HSPA

- confirm SAR exclusion according to power measurements
- verify MPR implementation according to power measurements
- address & resolve any SAR & power measurement issues

Wi-Max

- matching the test methodology to signal characteristics
 - TDD duty factor vs. OFDM crest factor, frame & gap time
 - normal transmission vs. test conditions
 - test software vs. basestation simulator issues
 - selecting time vs. frequency domain parameters for testing
 - validating the SAR system & measurement requirements

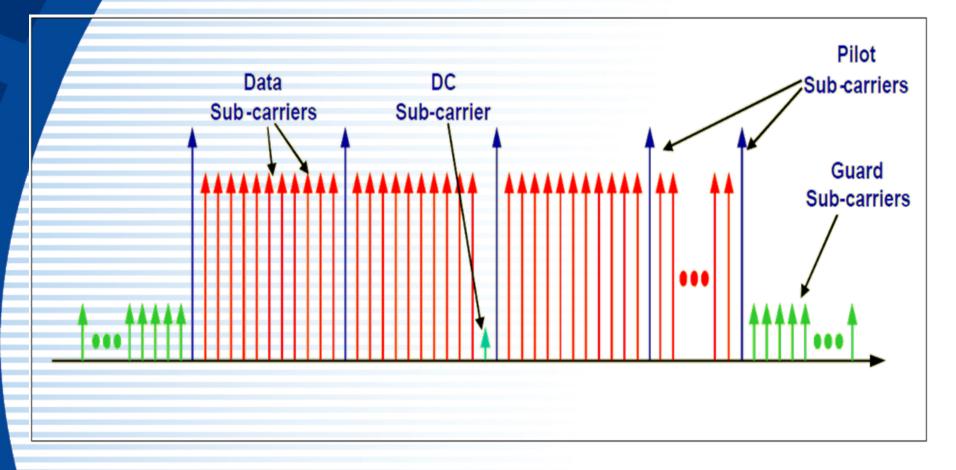
	Sub- test	$\beta_{\rm c}$	β_d	β _d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	$eta_{ m ec}$	β_{ed}	β _{ed} (SF)	$\begin{array}{c} \beta_{ed} \\ (codes) \end{array}$	(dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
4	1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
	2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
	3	15/15	9/15	64	15/9	30/15	30/15	β_{ed1} : 47/15 β_{ed2} : 47/15	4	2	2.0	1.0	15	92
	4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
	5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{COI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$.

Note 2: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Inner loop power control necessary to maintain the required E-TFCI during the test:

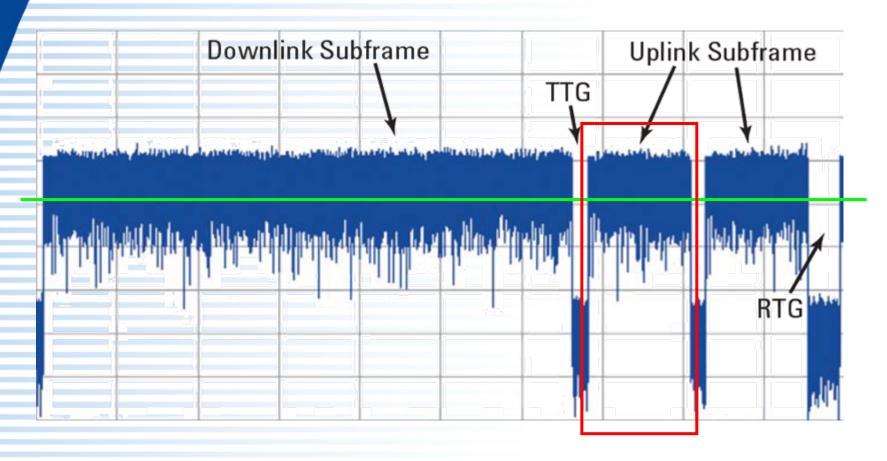
- set the Absolute Grant according to Table C.11.1.3 of TS 34.121-740
- set the UE power to be at least 5dB lower than the Maximum output power
- send power control bits to +1, wait 500 ms; repeat until E-TFCI begins to decrease
- send power control bits to -1 and confirm E-TFCI is equal to target E-TFCI
- measure mean power should be averaged over at least one timeslot
- repeat measurement for different combinations of beta given in Table C.11.1.3



Reported HSPA Power

Mc	odes		нѕі	OPA				HSUPA			WCDMA
s	ets	1	2	3	4	1	2	3	4	5	
Band Channel					Power [dBm]						Power [dBm]
	4132	21.04	18.30	17.90	17.20	19.10	20.50	17.80	21.40	19.00	21.80
850	4183	20.40	17.80	17.20	17.07	19.10	19.10	15.90	19.80	18.00	20.60
	4233	21.20	18.20	17.70	17.20	18.50	19.20	16.10	19.80	19.00	21.30
	9262	21.00	18.00	17.850	17.20	18.80	19.20	17.20	19.80	18.00	21.15
1900	9400	21.10	18.00	18.20	17.30	19.00	20.10	17.30	20.20	18.30	21.15
	9538	20.00	17.80	17.60	17.00	18.70	19.10	17.10	19.80	15.60	20.08
	βс		6	15	2	11	6	15	2	15	
1	βd		15	15	15	15	15	15	15	15	
ΔΑCΚ, ΔΝ	ΔΑCK, ΔΝΑCK, ΔCQI		8	8	8	8	8	8	8	8	
А	GV	20	12	15	17	20	12	15	17	21	

OFDM/OFDMA

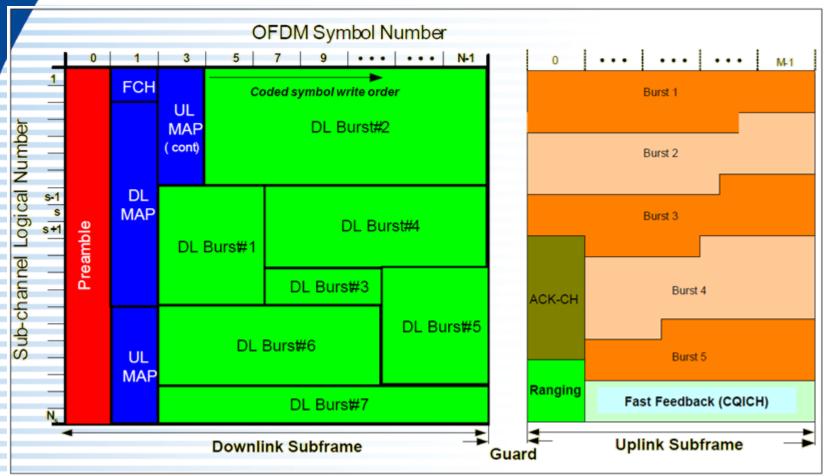


TDD Frame Structure

test software; test software + signal generator?

Wi-Max communication test set?

- SAR test methodology issues
 - TDD: duty factor OFDM/Burst to frame average
 - OFDM: PAR (crest factor) within burst
- signal characteristics
 - normal use vs. test conditions
 - determining the maximum TDD duty factor
 - frame structure: burst intervals & gaps
 - evaluating output power & SAR probe issues for PAR
 - setting maximum uplink symbol & sub-carrier allocation
- test limitations
 - software vs. basestation simulator



Time & Frequency Parameters

- frames are divided into UL & DL sub-frames of
 - different zone types (PUSC, FUSC, AMC etc.) & sub-channels
- zones contain bursts
 - a burst is assigned to a dedicated user
 - an OFDM burst may not be the same as a conventional power burst
- smallest logical allocation
 - frequency domain = sub-channel = groups of sub-carriers
 - time domain = symbol ~ guard time & carrier spacing
- sub-channels are group into segments
 - a segment can contain 1-6 sub-channels
- 1 slot is the minimum data allocation
 - a slot = 1 sub-channel = 1 3 symbols (3 symbols for UL-PUSC)

Wi-Max Frame Structures

Example PUSC

Parameter	Downlink	Uplink	Downlink	Uplink	
System Bandwidth	5 N	ЛНz	10 MHz		
FFT Size	5	12	10	24	
Null Sub-Carriers	92	104	184	184	
Pilot Sub-Carriers	60	136	120	280	
Data Sub-Carriers	360	272	720	560	
Sub-Channels	15	17	30	35	
Symbol Period, T _S		102.9 mi	croseconds		
Frame Duration	5 milliseconds				
OFDM Symbols/Frame	48				
Data OFDM Symbols		4	44		

October 2008 TCB Workshop 22

device operating parameters

- channel BW, sub-carrier spacing, operating frequency
- if TDD maximum duty factor according to
 - burst average power & frame average power
- transmission formats
 - normal use vs. test configurations
 - zone types, time & frequency domain resource allocations
- SAR test methodology & parameters
 - probe calibration issues
 - maximum TDD duty factor
 - verify error margin & resolve burst crest factor issues
 - test software vs. test set configurations
 - if TDD isolate DL signal in the SAR measurement

Technology & Product Test Setup

- measure configurations required by the procedures
 - identify the specific test setup & parameters
- 3G power measurements (HSPA, 1xRTT/EV-DO)
 - identify parameters & ensure numbers make sense
- 802.11a/b/g, laptop, tablets & cellphones
 - KDB procedures may overlap, take all applicable procedures into consideration, including KDB 447498
- KDB 447498 intended for generic configurations
 - modules, simultaneous transmission, hand-held & body
 SAR, PTT & mobile devices etc.
- resolve all test issues before conducting tests

CDMA 2000 Power Measurements

IS-2000	Channel	SO2 [dBm]	SO2 [dBm]	SO2 [dBm]	SO55 [dBm]	SO55 [dBm]	SO9 [dBm]	SO9 [dBm]	SO55 [dBm]	TDSO SO32 FCH Only [dBm]	TDSO SO32 FCH+SCH [dBm]
	F-RC	RC1	RC3	RC4	RC1	RC3	RC2	RC5	RC2	RC3	RC3
Band	Vocoder Rate	Full	Full	Full	Full	Full	Full	Full	Full	Full	Full
	1013	24.01	24.22	24.18	24.13	24.14	24.16	24.05	24.09	24.16	23.43
Cellular	384	23.53	23.65	23.57	23.54	23.62	23.74	23.77	23.61	23.68	22.92
	777	23.40	23.50	23.54	23.42	23.50	23.50	23.44	23.54	23.56	22.91
	25	23.23	23.29	23.25	23.33	23.44	23.18	23.45	23.35	23.36	22.58
PCS	600	23.54	23.54	23.60	23.68	23.78	23.69	23.60	23.59	23.68	22.76
	1175	23.72	23.78	23.80	23.59	23.69	23.59	23.76	23.74	23.74	22.96

EV-DO Power Measurements

Cellular B	and RTA	P		Cellular B	and - FTAP		
		R-Data	Conducted power (dBm)			R-Data	Conducted power (dBm)
Channel	f(MHz)	7 (F. 17 L.C.). 11 11 12 20 (1902) 2000 (27)	Average	Channel	f (MHz)	Pkt Size	Average
		9.6	23.87			9.6	23.90
		19.2	23.94	1		19.2	23.88
384	836.52	38.4	23.87	384	836.52	38.4	23.89
		76.8	23.93]		76.8	23.90
		153.6	23.94			1536	23.88

٠.					_			
	PCS Band	- RTAP			PCS Band	- FTAP		
			R-Dáta	Conducted power (dBm)			R-Data	Conducted power (dBm)
	Channel	f (MHz)	Pkt Size	Average	Channel	f (MHz)	Pkt Size	Average
-			9.6	24.06			9.6	23.94
			19.2	24.15	1		19.2	23.93
	600	1880.00	38.4	24.14	600	1880.00	38.4	23.98
			76.8	24.04]		76.8	23.99
			153.6	24.00			153.6	23.97

GSM/GPRS/EDGE Power & SAR Measurements

4		GPRS								
	Frequency (MHz)	1 slot Power (dBm)	2 slots Power (dBm)	3 slots Power (dBm)	4 slots Power (dBm)					
	824.2	31.8	30.8							
	836.6	31.8	30.8	MER MER BOX						
	848.8	31.9	31.1		STATE OF THE OWNER, OF					

	EGPRS							
Frequency (MHz)	1 slot Power (dBm)	2 slots Power (dBm)	3 slots Power (dBm)	4 slots Power (dBm)				
824.2	26.8	26.8	26.8	26.8				
836.6	26.9	26.9	26.9	26.9				
848.8	27.0	27.0	27.0	27.0				

CAN DE LA COMPANIA	GPRS							
Frequency (MHz)	1 slot Power (dBm)	2 slots Power (dBm)	3 slots Power (dBm)	4 slots Power (dBm)				
1850.2	28.8	27.9						
1880.0	28.8	27.8						
1909.8	28.7	27.8		DECLE SHAPES				

	EGPRS								
Frequency (MHz)	1 slot Power (dBm)	2 slots Power (dBm)	3 slots Power (dBm)	4 slots Power (dBm)					
1850.2	26.1	26.1	26.1	26.1					
1880.0	26.0	26.0	26.0	26.0					
1909.8	26.0	26.0	26.0	[†] 26.0					

General Review Concerns

Test reports

- check numbers & plots
 - identify DUT & antenna positions and orientations
 - numbers match in all parts of the report
- info & descriptions are accurate & meaningful
- attestations are signed and all tests are dated
- Power measurements are consistent in all reports
- Manuals & instructions
 - include actual manuals with proper instructions
 - verify discrepancies
 - especially operating requirements and SAR numbers

Other Concerns

SAR standards development delays

- resolve test issues before testing
 - for 802.11n & other MIMO configurations
 - for any non-standard products & technologies
 - inquire if PBA is required
- PBA revised to include LTE & 802.20
- acquire the necessary proficiency on related products & technologies to conduct test & review
- ensure numbers & results in test reports have clearly identified supporting info
- look for obvious errors position, SAR vs. power

Other Questions

round numbers to 2 significant digits

- inquire through KDB if special consideration is needed
- test questions should come from grantees & labs
 - provide copy of KDB inquiry to TCB
 - including KDB tracking number in filing
- review questions should come from TCB
 - issues are resolved between TCB & grantee (& its lab)
- PBA requires TCB to review & determine
 - appropriateness of test methodologies & test conditions
 - resolve issues with grantee and determine if TCB can conduct the review without further difficulties