The Procedures described in this presentation are available in the following KDB publications:

- **KDB 941225:**
 - SAR Measurement Procedures for 3G Devices
 - CDMA 2000 / Ev-Do
 - WCDMA / HSDPA

- **KDB 865664:**
 - SAR Measurement Requirements for 3 – 6 GHz

- **KDB 248227:**
 - SAR Measurement Procedures for 802.11 a/b/g Transmitters
Agenda

- SAR Measurement Procedures for 3G Devices
 - CDMA 2000 / Ev-Do
 - WCDMA / HSDPA
- SAR Measurement Requirements for 3 – 6 GHz
- SAR Measurement Procedures for 802.11 a/b/g Transmitters
- SAR Measurement Procedures -

for

3G Devices

CDMA 2000 / EV-DO
WCDMA / HSDPA

(Released June 2006)
Overview

- SAR measurement procedures for 3G devices
 - Part 22 & Part 24 handsets and data modems
 - procedures may not fully apply to other radio services
 - test configurations are mostly derived according to
 - 3GPP2/TIA & 3GPP standards
- devices are tested according to
 - operating capabilities and dominant use conditions
- device test configurations are standardized
 - for head & body SAR measurements
 - to minimize SAR variations
CDMA 2000 procedures for Release 0 & Release A handsets with
- MS Protocol Revision 6 & 7
 - 1x RTT only or
 - 1x RTT and built-in Ev-Do

Head/body SAR is measured in RC3
- with established radio link through call processing
- using the same RC in forward and reverse links

SAR in RC1 is selectively confirmed
- according to output power and exposure conditions
Output Power

- verify maximum output power
 - on high, middle and low channels
 - according to 3GPP2 C.S0011 / TIA-98-E, Sec. 4.4.5
 - to determine SAR test configurations

- power measurement configurations
 - Test Mode 1, SO55, RC1, Traffic Channel @ 9600 bps
 - Test Mode 3, SO55 or SO32, RC3, FCH @ 9600 bps
 - Test Mode 3, SO32, RC3, FCH+SCH @ 9600 bps
 - other configurations supported by the DUT
 - power control
 - Bits Hold for FCH+SCH
 - otherwise All Bits Up
Head SAR

- measure in RC3
 - at full rate with Loopback SO55
 - according to applicable requirements
 - in Supplement C 01-01 & IEEE 1528

- measure in RC1 on the maximum output channel
 - \textbf{only} if maximum average output $\geq \frac{1}{4}$ dB higher than RC3
 - use the exposure configuration that result in the highest SAR for that channel in RC3
 - highest SAR configuration among left & right side, touch & tilt positions with antenna extended and retracted
Body SAR

- measure in RC3 at full rate using TDSO SO32 with
 - FCH only (may use SO55 instead of SO32)
 - FCH + SCH (must use TDSO SO32)
 - only if the maximum average output power ≥ ¼ dB higher than with FCH only
 - use the exposure configuration that result in the highest SAR for that channel with FCH only
 - monitor output fluctuations and SCH dropout

- measure in RC1
 - only if the maximum average output power ≥ ¼ dB higher than RC3 FCH only & FCH + SCH
 - use the body exposure configuration that result in the highest SAR, with antenna extended and retracted, for that channel in RC3
Ev-Do

Procedures for Rev. 0 & Rev. A (IS-856 / TIA-856-A)
– Ev-Do & 1x RTT may roam but not simultaneously active

measure SAR
– with established radio link through call processing
– or use chipset based Factory Test Mode (FTM) with communication test set and no call processing

configure DUT according to
– FTAP/RTAP (C.S0029-0) and Subtype 0/1 PHY configurations
– FETAP/RETAP (C.S0029-A) and Subtype 2 PHY configurations
– maximum output power procedures in C.S0033

SAR in 1x RTT & Ev-Do Rev. A are selectively confirmed
– according to output power and exposure conditions
Output Power

configure measurements according to
– C.S0033-0 / TIA-866 for Rev. 0
 • FTAP: 2 slot version of 307.2 kbps; ACK in all slots
 • RTAP: 153.6 kbps in Subtype 0/1 PHY configuration
– C.S0033-A for Rev. A
 • FETAP: 2 slot version of 307.2 kbps with ACK in all slots
 • RETAP: 4096 bits payload with 16 slot termination target in Subtype 2 PHY configuration

power control
– ‘All Bits Up’ in both FTM & call processing modes
Head & Body SAR

- body SAR
 - is required for Rev. 0 in Subtype 0/1 PHY configuration
 - is **NOT** required for Rev. A when the maximum average output power in Subtype 2 PHY configuration is less than in Subtype 0/1
 - otherwise, measure SAR on the maximum output channel using the exposure configuration that result in the highest SAR for that channel in Rev. 0

- head SAR is **NOT** required unless
 - device supports VOIP for operations next to ear
Ev-Do & 1x RTT

1x RTT SAR is **NOT** required for Ev-Do devices
- when the maximum average output power for 1x RTT < $\frac{1}{4}$ dB higher than Subtype 0/1
 - otherwise, measure body SAR with CDMA 2000 procedures

SAR is **NOT** required for handsets with built-in Ev-Do
- when the maximum average output power for Ev-Do Rev. 0 < $\frac{1}{4}$ dB higher than 1x RTT in RC3
 - otherwise test SAR in Subtype 0/1 PHY configuration on the maximum output channel using the exposure configuration that result in the highest SAR for that channel in RC3
- when the maximum average output power for Ev-Do Rev. A < Rev. 0 or < $\frac{1}{4}$ dB higher than 1x RTT RC3
 - otherwise test SAR in Subtype 2 PHY configuration on the maximum output channel using the exposure configuration that result in the highest SAR for that channel
WCDMA procedures for Release 99 & Release 5 handsets with
- WCDMA only
- WCDMA and built-in HSDPA

Head and body SAR is measured with
- established radio link through call processing
- 12.3 kbps RMC and Test Loop Mode 1

SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCHn)
- according to output power, exposure conditions and device operating capabilities
Output Power

- verify maximum output power
 - on high, middle and low channels
 - according to 3GPP TS 34.121, Sec. 5.2
 - using appropriate RMC or AMC with TPC set to all “1’s”

- power measurement configurations
 - 12.2 kbps RMC and 12.2 kbps AMC
 - other configurations supported by the DUT
 - 64, 144, 384, 768 kbps RMC
 - DPDCH₂...⁶ when applicable
Head SAR

- measured in 12.2 kbps RMC
 - according to applicable requirements
 - in Supplement C 01-01 & IEEE 1528

SAR is **NOT** required for AMC

- when the maximum average output power for 12.2 kbps AMC < ¼ dB higher than 12.2 kbps RMC
- otherwise, measure SAR on the maximum output channel in 12.2 kbps AMC with a 3.4 kbps SRB
 - use the exposure configuration that result in the highest SAR for that channel in 12.2 kbps RMC
 - highest SAR configuration among left & right side, touch & tilt positions with antenna extended and retracted
Body SAR

- measured in 12.2 kbps RMC

- SAR is **NOT** required for other spreading codes and multiple DPDCH\textsubscript{n} supported by the device
 - when the maximum output for each of these other configurations < $\frac{1}{4}$ dB higher than 12.2 kbps RMC
 - otherwise, measure SAR on the maximum output channel in each of these configurations

 - use the body exposure configuration that result in the highest SAR, with antenna extended and retracted, for that channel in 12.2 kbps RMC
HSDPA

procedures for Release 5

- HSDPA is an integral part of WCDMA
- HSDPA & WCDMA are simultaneously active

measured SAR

- with established radio link through call processing
- or chipset based Factory Test Mode (FTM) with
 communication test set and no call processing
- in WCDMA with 12.2 kbps RMC and Test Loop Mode 1
- in HSDPA with FRC and 12.2 kbps RMC using the
 highest SAR configuration in WCDMA

SAR is selectively confirmed for other physical channel
configurations (DPCCH & DPDCHₙ)

- according to output power, exposure conditions and
device operating capabilities
Output Power

- verify maximum output power
 - on high, middle and low channels
 - according to 3GPP TS 34.121, Release 5, Sec. 5.2
 - using appropriate FRC and RMC with TPC set to all “1’s”

- measurement configurations
 - 12.2 kbps RMC
 - 12.2 kbps FRC with 12.2 kbps RMC

- other configurations supported by the DUT
 - DPCCH, DPDCH_n, spreading codes, HS-DPCCH etc.
Head & Body SAR

- when voice transmission and head exposure conditions are applicable
 - use WCDMA handset head SAR procedures

- body exposure for HSPDA data devices
 - use WCDMA handset body SAR procedures, and
 - FRC with a 12.2 kbps RMC in Test Loop Mode 1
 - using the highest body SAR configuration in 12.2 kbps RMC without HSDPA
RFC & H-Sets

- H-set is configured in FRC according to UE category
 - HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes, RV coding sequence are defined by H-set
- use QPSK in H-set
- use CQI feedback cycle of 2 ms in HS-DPCCH
- use $\beta_c=9$ and $\beta_d=15$ for DPCCH and DPDCH gain factors
- use $\Delta_{ACK}=\Delta_{NACK}=5$ and $\Delta_{CQI}=2$
- SAR Measurement Requirements -

for

3 – 6 GHz

(Released October 2006)
Overview

- identify SAR measurement and instrumentation issues
 - smaller penetration depth at higher frequencies
 - higher field gradients closer to the tissue boundary
 - existing SAR procedures for below 3 GHz are insufficient
 - tissue-equivalent media recipes require non-polar liquids

- review of FCC exploratory measurements and standards committees discussions
- provide interim guidance for equipment certification
- enable an acceptable level of measurement confidence while standards are being developed
Phantom

- head and flat phantom
 - according to Supplement C 01-01 & IEEE 1528 criteria
 - phantom shell issues under investigation by IEEE / IEC
 - need to account for underestimated SAR
 - $\pm 10\% \varepsilon_r$ & $\pm 5\% \sigma$ for liquid target value uncertainty
 - dielectric measurement uncertainty remains at $\pm 5\%$
 - 10 cm liquid depth from SAM ERP or flat phantom

- flat phantom size
 - 5 cm surrounding transmitter
 - or 3 penetration depths around measurement region
 - maximum of 2 overlapping area scans to cover entire projections of certain standalone fully integrated DUT
 - regions of host device not contributing to SAR may extending beyond phantom margin
Measurement Constraints

<table>
<thead>
<tr>
<th>Depth/Surface Energy Ratio (%)</th>
<th>3 GHz</th>
<th>4.5 GHz</th>
<th>6 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Probe Sensor to Phantom Surface Spacing (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

October 2006 3 - 6 GHz SAR Requirements
Probe Requirements

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Probe Tip Diameter</th>
<th>Probe Sensor Offset</th>
<th>Probe Calibration Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 4.5 GHz</td>
<td>≤ 4 mm</td>
<td>≤ 2 mm</td>
<td>± 50 MHz > Probe Calibration ≤ ± 100 MHz Calibration Uncertainty</td>
</tr>
<tr>
<td></td>
<td>ε<sub>r</sub> ≤ ± 10%, σ ≤ ± 5%</td>
<td>ε<sub>r</sub> ≤ ± 10%, σ ≤ ± 5%</td>
<td>ε<sub>r</sub> ≤ ± 10%, σ ≤ ± 5%</td>
</tr>
<tr>
<td></td>
<td>< 15%, k=2</td>
<td>< 15%, k=2</td>
<td>< 15%, k=2</td>
</tr>
<tr>
<td>≥ 4.5 GHz</td>
<td>≤ 3 mm</td>
<td>≤ 1.5 mm</td>
<td>ε<sub>r</sub> ≤ ± 5%, σ ≤ ± 2.5%</td>
</tr>
<tr>
<td></td>
<td>e<sub>r</sub> ≤ ± 5%, σ ≤ ± 2.5%</td>
<td>e<sub>r</sub> ≤ ± 5%, σ ≤ ± 2.5%</td>
<td>e<sub>r</sub> ≤ ± 5%, σ ≤ ± 2.5%</td>
</tr>
<tr>
<td></td>
<td>< 20%</td>
<td>< 20%</td>
<td>< 20%</td>
</tr>
</tbody>
</table>

(Submit Certification to FCC)
SAR Scan Requirements

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Requirement Description</th>
<th>Requirement Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 4.5 GHz</td>
<td>Closest Measurement Point to Phantom</td>
<td>≤ 3.5 ±0.5 mm</td>
</tr>
<tr>
<td></td>
<td>Zoom Scan (x, y) Resolution</td>
<td>≤ 5 mm</td>
</tr>
<tr>
<td></td>
<td>Zoom Scan (z) Resolution</td>
<td>≤ 3 mm</td>
</tr>
<tr>
<td></td>
<td>Minimum Zoom Scan Volume</td>
<td>≥ 30 x 30 x 24</td>
</tr>
<tr>
<td></td>
<td>Minimum Zoom Scan Grid Points</td>
<td>≥ 7 x 7 x 9</td>
</tr>
<tr>
<td>≥ 4.5 GHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SAR Scan Procedures

- probe boundary effect compensation required when
 - probe tip to phantom surface distance < ½ probe tip diameter
 - or probe boundary effects error > 5%

- area scan resolution ≤ 10 mm

- peaks in area scan > 1.0 cm from scan boundary

- zoom scan configurations
 - 1st two measurement points ≤ 5 mm of phantom surface
 - 3 points recommended above 4.5 GHz
 - when graded grids (z) are used
 - 1st point < 3 mm to phantom surface at < 4.5 GHz
 - 1st point < 2.0 mm to phantom surface at ≥ 4.5 GHz
 - subsequent graded grid ratio < 2.0; 1.5 recommended
 - 1-g SAR volume ≥ 5 mm from zoom scan boundary
Post-Processing

- post-processing algorithm accuracy
 - equivalent to 5 mm area scan measurement resolution
 - equivalent to 1 mm zoom scan measurement resolution

- verify with IEC 62209-2 SAR Reference Functions
 - 3 available functions to cover different SAR distributions
 - different area/zoom scan resolutions require independent verification

- verify interpolated/extrapolated peak SAR to identify post-processing errors
 - in highest SAR configuration
 - according to measured and extrapolated (curve-fitted) values
System Accuracy

- verify SAR measurement system accuracy
 - according to Supplement C 01-01 & IEEE 1528 criteria
 - using IEC 62209-2 (IEEE 1528a) reference dipoles
 - must measure within a valid probe calibration range

- system accuracy tolerance
 - 1-g SAR within 10% of manufacturer calibrated dipole target value
 - extrapolated peak SAR at phantom surface above dipole feed-point within 15% of calibrated target peak SAR of dipole
higher frequencies are mostly broadband
 – reference dipoles may not be available at desired frequencies
SAR systems may be verified
 – within device transmission band or within ± 100 MHz of device mid-band frequency
 – within ± 200 MHz of device mid-band frequency only if both system verification and DUT are measured
 • using the same tissue-equivalent medium
 • the same probe calibration point, area/zoom scan resolutions, interpolation and extrapolation procedures
Duty Factor vs. Crest Factor

For $t =$ pulse width and $T =$ period of a pulse train

Duty factor of a periodic pulse train is t/T

Crest factor (voltage) of a periodic pulse train is $\frac{1}{\sqrt{\frac{t}{T}}}$

Power \propto voltage2; therefore, peak to average power ratio is T/t

For TDMA with 2/6 duty factor, $c_f = 3$;

GSM with 1/8 duty factor, $c_f = 8$
Signal Conversion

SAR field-probe signal conversion equation in typical systems:

\[V_i = U_i + U_i^2 \frac{cf}{dcp_i} \]

- \(U_i \) is the measured voltage
- \(V_i \propto \text{power} \)
- \(cf \) is \(\propto \text{power} \)
- \(dcp_i \) is the diode compression voltage

\[E_i = \sqrt{\frac{V_i}{Norm_i \ast ConvF}} \]

- \(E_i \propto \text{E-field} \)
- SAR Measurement Procedures -

for

802.11 a/b/g Transmitters

(Released October 2006)
Overview

- 802.11 a/b/g in §§15.247, 15.407 and Part 90Y
- Dynamic network operating configurations & conditions result in unreliable test environment
- Test mode conditions may not evaluate normal exposure
- Multiple data rates, modulation schemes, operating protocols (a/b/g), antenna diversity and other proprietary configurations require substantial test considerations
- SAR measurement difficulties relating to voltage crest factors and peak to average power ratios of random noise-like signals
SAR Evaluation

- measure SAR according to
 - Supplement C 01-01 and IEEE 1528 criteria
 - October 06 release: “3 – 6 GHz SAR Measurement Requirements”
- configure the DUT in chipset based Factory Test Mode
- test the required channels, proprietary modes and antenna diversity configurations
- report both measured and duty factor adjusted SAR
- verify voltage crest factor and peak to average power ratio issues before SAR measurements and apply modified procedures as necessary
Modulation & Data Rate

<table>
<thead>
<tr>
<th>Data Rate (Mbps)</th>
<th>Modulation</th>
<th>Data Rate (Mbps)</th>
<th>Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>full</td>
<td>half</td>
<td>quarter</td>
<td>802.11 b/g</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1.5</td>
<td>BPSK</td>
</tr>
<tr>
<td>9</td>
<td>4.5</td>
<td>2.25</td>
<td>BPSK</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>3</td>
<td>QPSK</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>4.5</td>
<td>QPSK</td>
</tr>
<tr>
<td>24</td>
<td>12</td>
<td>6</td>
<td>16-QAM</td>
</tr>
<tr>
<td>36</td>
<td>18</td>
<td>9</td>
<td>16-QAM</td>
</tr>
<tr>
<td>48</td>
<td>24</td>
<td>12</td>
<td>64-QAM</td>
</tr>
<tr>
<td>54</td>
<td>27</td>
<td>13.5</td>
<td>64-QAM</td>
</tr>
</tbody>
</table>
Part 15 Test Channels

<table>
<thead>
<tr>
<th>Mode</th>
<th>GHz</th>
<th>Channel</th>
<th>Turbo Channel</th>
<th>“Default Test Channels”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>§15.247</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNII 5.18 UNII 2.412 b/g</td>
</tr>
<tr>
<td></td>
<td>2.412</td>
<td>1</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>2.437</td>
<td>6</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>2.462</td>
<td>11</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>5.18</td>
<td>36</td>
<td>42 (5.21 GHz)</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>5.20</td>
<td>40</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>5.22</td>
<td>44</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>5.24</td>
<td>48</td>
<td>50 (5.25 GHz)</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>5.26</td>
<td>52</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>5.28</td>
<td>56</td>
<td>58 (5.29 GHz)</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>5.30</td>
<td>60</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>5.32</td>
<td>64</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>5.500</td>
<td>100</td>
<td>100 (5.5 GHz)</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>5.520</td>
<td>104</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>5.540</td>
<td>108</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>5.560</td>
<td>112</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>5.580</td>
<td>116</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>5.600</td>
<td>120</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>5.620</td>
<td>124</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>5.640</td>
<td>128</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>5.660</td>
<td>132</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>5.680</td>
<td>136</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>5.700</td>
<td>140</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>5.745</td>
<td>149</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>5.765</td>
<td>153</td>
<td>152 (5.76 GHz)</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>5.785</td>
<td>157</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>5.805</td>
<td>161</td>
<td>160 (5.80 GHz)</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>5.825</td>
<td>165</td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

October 2006 802.11 a/b/g SAR Procedures 36
<table>
<thead>
<tr>
<th>Regulatory class</th>
<th>Channel starting frequency (GHz)</th>
<th>Channel spacing (MHz)</th>
<th>Channel set</th>
<th>Transmit power limit (mW)</th>
<th>Emissions limits set</th>
<th>Behavior limits set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>20</td>
<td>36, 40, 44, 48</td>
<td>40</td>
<td>1</td>
<td>1, 2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>20</td>
<td>52, 56, 60, 64</td>
<td>200</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>20</td>
<td>149, 153, 157, 161</td>
<td>800</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>20</td>
<td>100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140</td>
<td>200</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>20</td>
<td>165</td>
<td>1000</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>4.9375</td>
<td>5</td>
<td>1, 2, 3, 4, 5, 6, 7, 8, 9, 10</td>
<td>25</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>4.9375</td>
<td>5</td>
<td>1, 2, 3, 4, 5, 6, 7, 8, 9, 10</td>
<td>500</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>4.89</td>
<td>10</td>
<td>11, 13, 15, 17, 19</td>
<td>50</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>4.89</td>
<td>10</td>
<td>11, 13, 15, 17, 19</td>
<td>1000</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>4.85</td>
<td>20</td>
<td>21, 25</td>
<td>100</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>4.85</td>
<td>20</td>
<td>21, 25</td>
<td>2000</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>612–255</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
Part 90Y Test Channels

<table>
<thead>
<tr>
<th>Mode</th>
<th>GHz</th>
<th>Channel No.</th>
<th>Channel BW (MHz)</th>
<th>Default/Required Test Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.9425</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.9475</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.9525</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.9575</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.9625</td>
<td>5</td>
<td>5</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>4.9675</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.9725</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.9775</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.9825</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.9875</td>
<td>10</td>
<td>10</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>4.945</td>
<td>11</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>4.955</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.965</td>
<td>15</td>
<td>10</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>4.975</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.985</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.955</td>
<td>21</td>
<td>20</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>4.975</td>
<td>25</td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>
Antenna Diversity

- receive diversity only
 - identify and test dedicated transmit antenna

- legacy switched diversity
 - test and determine highest SAR antenna
 - complete tests using antenna with highest SAR
 - test both antennas if SAR > 1.2 W/kg & > 25% variation
 - apply defined duty factor

- spatial diversity MIMO & cyclic delay diversity
 - simultaneous transmission

- 2-antenna beam-forming
 - simultaneous transmission + maximum EIRP condition

- other diversity configurations: contact FCC
 - STC, phased array, n-antenna beam-forming etc.
devices should be tested according to these procedures to qualify for TCB approval

- SAR Measurement Procedures for 3G Devices
 - CDMA 2000 / Ev-Do
 - WCDMA / HSDPA
- SAR Measurement Requirements for 3 – 6 GHz
- SAR Measurement Procedures for 802.11 a/b/g Transmitters

otherwise, contact the FCC to determine if

- exceptions can be made
- additional procedures and/or requirements may apply
- application should be submitted to the FCC for approval