Maritime (Part 80) and Aviation
(Part 87) Radio Services
Overview

October 2005
TCB Workshop

Andy Leimer
Equipment Authorization Branch

Federal Communications Commission
Office of Engineering and Technology
Laboratory Division
Global Maritime Distress and Safety System (GMDSS) Overview
Maritime Services

Digital Selective Calling (DSC) Overview

Replacement for the radiotelephone and radiotelegraph (Morse) alarm signal

Information transmitted - the priority of the call (DISTRESS, URGENCY, SAFETY or ROUTINE), the address, the identification of the ship in distress, the position of the ship in distress, and the nature of the distress

MF/HF DSC Distress and Safety Channels:
2187.5, 4207.5, 6312.0, 8414.5, 12577.0, and 16804.5 kHz

VHF DSC Distress and Safety Channel:
Marine channel 70 (156.525 MHz)

DSC Classifications:
http://www.navcen.uscg.gov/marcomms/gmdss/dsc.htm
Maritime Services

VHF Channel Information

- 156 to 162 MHz – channelized radio service (assigned channel frequencies)
 - A Channels: ship frequencies
 - B Channels: shore frequencies

http://www.navcen.uscg.gov/marcomms/vhf.htm

- Channels 2, 4, 60, and 62 cannot be used for transmission in US waters
 - User’s Manual must make this clear

- R&O (FCC 04-3) redesignates Channels 75 and 76 for communications related to port operations, and establish requirements for equipment to operate on the channels with reduced carrier power

Second R&O, Sixth R&O, and Second FNPRM (FCC 04-3)

redesignate Channels 75 and 76 for communications related to port operations, and establish requirements for equipment to operate on the channels with reduced carrier power;

establish a new emission mask in Part 80 to accommodate a wide range of data services
GMDSS – Part 80 Subpart W
GMDSS Equipment must meet the requirements of 80.1101(c)(2)
Non-Compulsory or voluntary equipment must meet the requirements of 80.225(a)
WARNING: DSC is permitted in VHF handheld radios but it must also meet 80.225(a). Paragraph 80.225(a) requires that DSC equipment installed in coast or ship stations must meet either the requirements of ITU-R M.493 or RTCM Paper 56-95/SC101-STD. Contact the FCC.
DSC typically not in handhelds since the requirements are hard to meet

Technical Standards
DC Voltage & Current into Final Device 2.1033(C)(8)
RF Output Power 2.1046 (Typically conducted power)
Modulation Characteristics (Audio Roll-off) 2.1047 & 80.213
Modulation Characteristics (Audio Frequency Response) 2.1047
Modulation Characteristics (Modulation Limiting) 2.1047
Occupied Bandwidth 2.1049(c)(1) & 80.211
Spurious & Harmonic Emission at Antenna Terminal 2.1051
Field Strength of Spurious & Harmonic Radiation 2.1053
Frequency Stability (Temperature) 2.1055 & 80.209
Frequency Stability (Voltage) 2.1055 & 80.209
Receiver radiated spurious emissions 80.217(b)
DC Voltage & Current into Final Device 2.1033(C)(8)

§ 80.207 Classes of emission
updated chart of Part 80 emissions designators
§ 80.213 Modulation requirements
156-162 and 216-220 MHz bands freq. deviation cannot exceed +/- 5 kHz
§ 80.215 Transmitter power
non portable ship station in the 156-162 MHz band must be between 8 and 25 Watts
§ 80.275 AIS US Coast Guard
approval requirements defined
§ 80.373 Private communications frequencies
updated frequency use table for 156–162 MHz Band
Maritime Services
VHF Applicable Rules (Cont.)

- Section 80.1101(b)…must be tested in accordance with the applicable testing standards listed
- Section 80.1101(c)(2) – lists applicable standards
 - IMO Resolution A.803(19) Performance Standards for Shipborne VHF Radio Installations Capable of Voice Communication and Digital Selective Calling
 - ITU-R Recommendation M.541-8 Operational Procedures for the use of Digital Selective-Calling Equipment in the Maritime Mobile Service
Maritime Services

VHF Applicable Standards

RTCM Paper 56-95/SC101-STD
- RTCM Recommended Minimum Standards for DSC Equipment Providing Minimum Distress and Safety Capability, Version 1.0 – defines minimum functions for DSC transceivers used in the US
- Paper Only ($10)

ITU-R M.541-9
Operational procedures for the use of digital selective-calling equipment in the maritime mobile service

ITU-R M.493-11
Digital selective-calling system for use in the maritime mobile service

ITU Radiocommunication Sector – standards, updates & news
Subscription Services (Electronic or paper)
http://www.itu.int/ITU-R/

October 2005 TCB Workshop 7

Maritime Services
VHF Equipment Authorization

Equipment Class
- GVH: Part 80 VHF Transmitter (GMDSS) Base Station
- TNB (Base Station) or TNF (Handheld): Part 80 VHF transmitters without GMDSS/DSC

For devices with DSC (Base Station)
- CS “Transmitter meets technical requirements for ship stations”.
- GM “This unit meets requirements for GMDSS as contained in Subpart W of Part 80”.
- Handhelds - no Note Code required

Modulations
- VHF Marine: 16K0F3E and/or 16K0G3E
- DSC: 16K0G2B (Requires separate line item)
Maritime Services
VHF Equipment Authorization (Cont.)

- Modulation Characteristics (Audio Roll-off) 2.1047 & 80.213
- Modulation Characteristics (Audio Frequency Response) 2.1047
- Modulation Characteristics (Modulation Limiting) 2.1047
- Occupied Bandwidth 2.1049(c)(1) & 80.211
- Spurious & Harmonic Emission at Antenna Terminal 2.1051
- Field Strength of Spurious & Harmonic Radiation 2.1053
 - FCC limit = 43 + 10log P(Watts) dB
 - P(dBm) = -30 + 10 log P(Watts) therefore Limit = -13 dBm
 - X axis is dBm
Maritime Services
VHF Equipment Authorization (Cont.)

- Frequency Stability (Temperature) 2.1055 & 80.209
- Frequency Stability (Voltage) 2.1055 & 80.209
- Typically test a low and high channel
- If the device has a switchable high/low power setting test at both high and low power. If the power is variable test at high power setting only.

- **US Coast Guard approval letter or MRA approval not required for VHF radios**
- **RF Exposure - handhelds**
Maritime Services
EPIRB – 406 MHz Frequencies

- 406 to 406.1 MHz Band dedicated to Search and Rescue (SAR) - Earth to Space, Rules now allow equipment authorization anywhere within this band
- 406 to 406.1 MHz is an FCC protected band (Reference FCC 04-75)

International Digital Emergency and Distress Frequencies

As noted by RTCM and SARSAT, 406.025 MHz is no longer the sole international digital distress frequency. According to the COSPAS-SARSAT 406 MHz Frequency Management Plan the International Telecommunication Union (ITU) has allocated the frequency band 406.0 – 406.1 MHz for the use of low power satellite position-indicating radio beacons.[1] COSPAS-SARSAT has divided this frequency band into channels to ensure that the distress beacon traffic does not exceed the system’s capacity.[2] Channels are opened as beacon production demands increase and the beacon population grows. According to the 406 MHz channel assignment table, the window for type approval of new beacon models at 406.025 MHz (channel B) closed on January 1, 2002. The next frequency, 406.028 MHz or channel C, opened on January 1, 2000, and is scheduled to close on January 1, 2006. Opening dates for frequencies 406.037 MHz and 406.040 MHz have also already been assigned (January 1, 2004 and January 1, 2008 respectively). The frequencies on which it is possible for beacons to operate range from 406.025 MHz to 406.076 MHz.

[2] Id. at 4-5.
Maritime Services
EPIRB Types & Categories

Class C – Section 80.1057
- VHF ch15/16. Manually activated, operates on maritime channels only. Not detectable by satellite. These devices have been phased out by the FCC and are no longer recognized. Grants can still be issued.

Class A, B, and S are obsolete

Category II
- 406/121.5 MHZ. Similar to Category I, except is manually activated. Some models are also water activated.

Category I
- 406/121.5 MHZ. Float-free, automatically activated EPIRB. Detectable by satellite anywhere in the world. Recognized by GMDSS.

Include Bracket information for Category I/II in Grant condition
Phase out - This affects all maritime beacons (EPIRBs), all aviation beacons (ELTs) and all personal beacons (PLBs).

This decision has been made by the international organization that controls the satellites to reduce false alarms. About 97 per cent of all 121.5 MHz analogue beacon detections are false alarms and this is placing an unnecessary strain on the global search and rescue system. The change has been made to ensure that scarce search and rescue assets needed for a genuine emergency are not caught up chasing false alerts.

False alarms from digital 406 MHz beacons can be resolved with a phone call as these devices transmit an identity code that can be cross-referenced with an ownership database.
Section 80.1061(a) - Notwithstanding the provisions in paragraph (b) of this section, 406.0–406.1 MHz EPIRBs must meet all the technical and performance standards contained in the Radio Technical Commission for Maritime Services document entitled RTCM Paper 77–02/SC110–STD, “RTCM Recommended Standards for 406 MHz Satellite Emergency Position-Indicating Radiobeacons (EPIRBs),” Version 2.1, dated June 20, 2002 (RTCM Recommended Standards).

Maritime Services
EPIRBs – Equip. Authorization

- All standards data required, even if not applicable for equipment authorization. Legal requirement.

- Approved Test Laboratories
 - Indoor tests – no TX to satellite
 - Outdoor tests – functional test w/ TX to satellite
 - Important to check application for approved test lab for 406 MHz devices. List available:
 http://www.cospas-sarsat.org/Beacons/beaconTypeApprovalLabs.htm
Equipment Class – GEP 406 MHz EPIRB
Note Code – “GM” for GMDSS compliance
Use 80.1101(c)(5) on 121.5 and 406 MHz line items
Section 80.1101(c)(5) 406.0–406.1 MHz EPIRBs:
Maritime Services
EPIRBs – Equip. Authorization (con’t)

- (iv) The 406.0-406.1 MHz EPIRBs must also comply with 80.1061.

- No RF Exposure Exhibit required – low duty factor
- All EPIRBs require US Coast Guard approval letter
- COSPAS – SARSAT Certificate
Maritime Services
EPIRB – 406 MHz Frequencies

The frequency change from 406.025 MHz to 406.028 MHz was allowed as an option of the manufacturer, but will be mandatory for new beacon models presented for certification and approved by COSPAS/SARSAT after January 1, 2002. New Grants must list the new frequency.

406.028 MHz required to prevent saturation of satellites at the old frequency (406.025 MHz). Reference FCC 02-102.

Maritime Services
EPIRBs – 406 MHz Characteristics

- **Frequency Tolerance**: short-term variations 2 ppm in 100 ms. Long-term variations +2 kHz / -5 kHz from 406.028 MHz in 5 years.
- **Power Output**: 5 W + 2 dB (35 to 39 dBm)
- **Maximum Continuous Transmission**: maximum of 45 seconds
- **Emissions Designator**: 16K0G1D
It is estimated that there are almost 700,000 121.5 MHz beacons in use world-wide. The list below gives typical 121.5 MHz beacon signal characteristics. Most of these units are used aboard aircraft and are required to meet national specifications based on ICAO standards.

Transmission characteristics of 121.5 MHz beacons are given in ITU Radio-Regulations Appendix 37-A, and included in ITU Recommendation ITU-R M.690-1.

The initial ICAO standards were not established with the aim of satellite reception of 121.5 MHz signals. The 121.5 MHz Cospas-Sarsat system was designed to serve the existing type of beacons, even though system performance is constrained by their characteristics. Parameters such as system capacity (number of simultaneous transmissions in the field of view of the satellite which can be processed by LEOLUTs) and location accuracy are limited. No information is usually provided about the operator's identity, although a morse coding of the signal is included in some models; however, these data are not processed automatically by Cospas-Sarsat LEOLUTs. Despite the limitations described above, the efficiency of 121.5 MHz beacons has been greatly enhanced by the use of satellite detection and Doppler location techniques.

121.5 MHz beacons carried aboard aircraft can usually be activated both manually and automatically by shock (using a crash sensor or G switch). This latter feature has led to numerous false alerts when a beacon is mounted in an aircraft with insufficient care or when an aircraft makes a "hard landing". By providing the location of transmitting beacons, Cospas Sarsat can be instrumental in the quick processing of false alerts.
Maritime Services
EPIRBs – Labeling Requirements

- FCC ID and Section 80.1103(e)
 - National Oceanic and Atmospheric Administration (NOAA) registration and label – identification code
 - RTCM Label
 - “USE ONLY DURING SITUATIONS OF GRAVE AND IMINENT DANGER”
Certification of AIS equipment in the United States In June 2002, the FCC released a Notice entitled "Applications For Equipment Authorization Of Universal Shipborne Automatic Identification Systems To be Coordinated with U.S. Coast Guard To Ensure Homeland Security". Pending completion of FCC rulemaking, the FCC Laboratory will coordinate review of applications for certification of AIS equipment with the United States Coast Guard to ensure that the equipment meets all applicable international standards and requirements. Essentially, AIS manufacturers must meet the requirements of the FCC's regulations for equipment authorization, 47 CFR 2 Subpart J (beginning 2.901), and the Coast Guard's Navigational and Vessel Inspection Circular (VIC) 8-01, Approval of Navigation Equipment for Ships. NVIC 8-01 describes the certification process for AIS and other navigation equipment described under the newly adopted SOLAS V. The Federal Communications Commission has requested comments on how its rules should be amended to accommodate AIS certification, in a further Notice of Proposed Rulemaking under Docket PR 92-257. Until these FCC rules are finally adopted, the procedures described in the FCC Notice and the NVIC should apply.
Maritime Services
AIS (Con’t)

- DSC – Channel 70 14K2G2B (typical BW)
- AIS 1 – Channel 87 GXW w/ 12.5 and 25 kHz channel spacing
- AIS 2 – Channel 88B w/ 12.5 and 25 kHz channel spacing
- Remote Frequency Assignment by US Coast Guard
- TDMA (multiplexing)/Gaussian Minimum Shift Keying modulation (GMSK) – GXW

[2] The International standards and requirements identified are: IMO Resolutions A.694(17) and MSC.74(69), Annex 3; ITU-R 1371-1; IEC standards IEC 60945, IEC 61162 and IEC 61993-2.

OBW must be derived from the mask spectral plots (typically -26 dB BW) since this information is not typically provided by AIS applicants.

Questions concerning AIS standards may be directed to Tim Maguire of the Wireless Telecommunications Bureau at tim.maguire@fcc.gov and concerning equipment authorization to Andrew Leimer at andrew.leimer@fcc.gov.
Maritime Services
AIS (Con’t)

US Coast Guard Approval Letter Required

Applicable FCC Rules

- 80.209 Frequency Tolerance 10ppm
- 80.211(f) Emissions Mask (category: other)
 - Note that IEC mask is much tighter
- 80.215(a)(1) Power 25 Watts for ship stations
- 80.215(g)(3) Automatic 1 Watt power reduction requirement for specific frequencies

Application must contain data for ALL international standards

Note: application must include data for all international standards even though some of the standards are not applicable for FCC Certification and will not be reviewed. This is a legal requirement.
Maritime Services
AIS (Con’t)

Standard AIS Grant Example

Equipment Class: Automatic Identification Systems

Notes: Shipboard Automatic Identification System (AIS)

<table>
<thead>
<tr>
<th>Grant Notes</th>
<th>FCC Rule Parts</th>
<th>Band (MHz)</th>
<th>Output Watts</th>
<th>Frequency Tolerance</th>
<th>Emission Designator</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>156 - 163</td>
<td>12.5</td>
<td>150 Hz</td>
<td>19K0GXW</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>156 - 163</td>
<td>12.5</td>
<td>150 Hz</td>
<td>1K51XXW</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>156.5 - 157.5</td>
<td>12.5</td>
<td>150 Hz</td>
<td>1K52GZB</td>
<td></td>
</tr>
</tbody>
</table>

The device operates on AIS 1 - Channel 77 (156.375 MHz) and AIS 2 - Channel 88 (162.025 MHz) with remote frequency assignment capability. This device also has DSC capability.

October 2005
TCB Workshop
25
Maritime Services
AIS (Con’t)

Previously Automatic Identification Equipment (AIS) required a US Coast Guard approval letter.

U.S. / European Community Mutual Recognition Agreement on Marine Equipment - July 1st, 2004

http://www.uscg.mil/hq/g-m/mse4/mra.htm

AIS requires EC Accrediting Body Certificate – needs “Wheelmark” and a USCG Approval Number (Issued by EC Notification Body) on the Label.

Exhibits

October 2005

TCB Workshop
Maritime Services
Ship Security Alert Systems (SSAS)

- Homeland Security directive
- 406 MHz SOSPAS-SARSAT system without 121.5 MHz homing beacon so messages are covert. Transmitter is essentially a modified 406 MHz EPIRB.

http://www.cospas-sarsat.org/FirstPage/ssas.htm
Maritime Services

SSAS – Equipment Authorization

- Currently no applicable Rules so applications are processed under the requirements specified in DA 04-4052
- Equipment Class – SSA (Ship Security Alert Systems)
- No RF Exposure required – low duty factor
- Grant condition – This device complies with the Ship Security Alert Systems (SSAS) provisions of DA 04-4052.
- Requires US Coast Guard Approval Letter

DA 04-4052

Released: December 28, 2004

On July 1, 2004, Chapter XI-2, Regulation 6, *Revised Performance Standards for a Ship Security Alert System (SSAS)*, of the Safety of Life at Sea Convention, to which the United States is a signatory, went into effect. The SSAS provides a means for certain ships to transmit a covert security alert to shore to indicate that the security of the ship is under threat or has been compromised. The U.S. Coast Guard will assure that required vessels meet SSAS requirements during its inspection of vessels.

The Commission’s Part 80 rules governing stations in the Maritime Service require certification for various radio transmitters used on board ships and by coast stations. The IMO Resolution recommended only functional requirements for the SSAS, not technical standards. Certain equipment meeting current Part 80 requirements may be utilized to meet SSAS requirements. In addition, there is equipment that meets the RTCM Recommended Standard for SSAS, but does not meet the current Part 80 requirements.[1] The Commission issued a *Notice of Proposed Rule Making* in PR Docket 00-48 that addresses the SSAS and seeks comment on certification requirements for the equipment.[2] During the pendency of the rulemaking proceeding, for SSAS equipment not meeting all current Part 80 requirements, the FCC Laboratory will review applications for certification under the RTCM recommended standard for SSAS equipment.

Questions concerning SSAS standards may be directed to Jim Shaffer of the Wireless Telecommunications Bureau at James.Shaffer@fcc.gov, and questions concerning equipment authorization may be directed to Andrew Leimer of the Office of Engineering and Technology at Andrew.Leimer@fcc.gov.

Maritime Services
SSAS – International Standards

Interim COSPAS-SARSAT Type Acceptance Procedures for SSAS

Final COSPAS-SARSAT Standards approved June 4, 2004
– Currently not available on the Internet – contact COSPAS-SARSAT for a copy
Maritime Services
Radars – Applicable Rules

- Majority of new devices use the 9300-9500 MHz band

- R.F. Power Output
 - Sections 2.1046(a), 80.215 – “mean power”
 - Duty Cycle = P.R.F. x Pulse Width
 - Peak Power = Average Power/Duty Cycle
 - Note: high peak power & low average power

- Modulation Characteristics
 - Section 2.1047
 - P0N (Pulsed CW Radars)
 - Pulse widths (typically selectable for range)
 - PRF

- Occupied Bandwidth
 - Sections 2.1049(c)(1), 80.209(b), 80.211(f)

80.213(g) Radar stations operating in the bands above 2.4 GHz may use any type of modulation consistent with the bandwidth requirements in §80.209(b).

80.213(h) Radar transponder coast stations using the 2900–3100 MHz or 9300–9500 MHz band must operate in a variable frequency mode and respond on their operating frequencies with a maximum error equivalent to 100 meters. Additionally, their response must be encoded with a Morse character starting with a dash. The duration of a Morse dot is defined as equal to the width of a space and 1/3 of the width of a Morse dash. The duration of the response code must not exceed 50 microseconds. The sensitivity of the stations must be adjustable so that received signals below −10 dBm at the antenna will not activate the transponder. Antenna polarization must be horizontal when operating in the 9300–9500 MHz band and either horizontal or both horizontal and vertical when operating in the 2900–3100 MHz band. Racons using frequency agile transmitting techniques must include circuitry designed to reduce interference caused by triggering from radar antenna sidelobes.
Maritime Services
Radar – Applicable Rules (Cont.)

- **Spurious Emissions at Antenna Port**
 - Sections 2.1051, 80.211(f)
- **Radiated Spurious Emissions**
 - Sections 2.1053, 80.211(f)
- **Frequency Stability – temperature & voltage variation**
 - Sections 2.1055, 80.209(b)
 - \(1.5/T\) where \(T=\)Pulse Duration (microseconds)
 - Example for 9300-9500 MHz Band – frequency must be within
 - Upper Limit = 9500 – \(1.5/T\)
 - Lower Limit = 9300 + \(1.5/T\)

80.211(f) The mean power when using emissions other than those in paragraphs (a), (b), (c) and (d) of this section:

(1) On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB;

(2) On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB; and

(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus \(10\log_{10}\) (mean power in watts) dB.

80.209(b) When pulse modulation is used in land and ship radar stations operating in the bands above 2.4 GHz the frequency at which maximum emission occurs must be within the authorized bandwidth and must not be closer than \(1.5/T\) MHz to the upper and lower limits of the authorized bandwidth where “T” is the pulse duration in microseconds. In the band 14.00–14.05 GHz the center frequency must not vary more than 10 MHz from 14.025 GHz.
Maritime Services
Radars – International standards

Section 80.273 Technical requirements for radar equipment – list of applicable standards

- RTCM Paper 133–87–SC 103–33
 - RTCM Recommended Performance Specification for a General Purpose Navigational Radar Set for Oceangoing Ships of 500 Gross Tons and Upwards for New Radar Installations

- RTCM Special Committee No. 65 Final Report
 - Performance Specification for a General Purpose Navigational Radar Set for Oceangoing Ships of 1,600 Tons Gross Tonnage and Upwards for New Radar Installations

- International Standards are under review

80.273(a)(2) Radar installed on ships of 1,600 gross tons and upwards on or before April 27, 1981, must comply with the provisions of Volume II of RTCM Special Committee No. 65 Final Report; Part II. Title: “Performance Specification for a General Purpose Navigational Radar Set for Oceangoing Ships of 1,600 Tons Gross Tonnage and Upwards for Ships Already Fitted.” Document approved by RTCM July 18, 1978; effective as FCC requirement on April 27, 1981.

The average power, pulse widths, pulse rise and decay times, and the interval between successive output pulses are measured (1/2 Voltage PW).

The pulse repetition frequency (PRF) is then calculated from the reciprocal of the interval.

The duty cycle is calculated from the product of the P.F.R. and the pulse width.

The average power is corrected for attenuation.

The peak power is calculated by dividing the average power by the duty cycle.

The spurious and harmonic radiation characteristics, the occupied bandwidth and the receiver radiation are measured.
Maritime Services
Radars – Equipment Authorization

- Equipment Class – MRD (Marine Radar)
- Can list entire band on Grant but must have operational frequencies and frequencies parameters (Hopping, etc.) in the Operational Description
- Modulation P0N (Not PON)
- Necessary BW is typically several MHz
- Measure all PW and OBW – preferable to include plots in the Test Report
- Conducted spurious radiation
- Case radiated measurements
 - Antenna terminated
- No RF Exposure requirements
Maritime Services Radars – Grant Example

- **Equipment Class** – MRD
- **List entire 9300-9500 MHz band**
- **Output Power** – manufacturers rated peak power
- **Frequency Tolerance** – leave blank (must comply)
- **No RF Exposure Conditional Requirements Necessary**

<table>
<thead>
<tr>
<th>Equipment Class</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Radar</td>
<td>Marine Radar RA41C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grant Notes</th>
<th>FCC Rule Parts</th>
<th>Frequency Range (MHz)</th>
<th>Output Watts</th>
<th>Frequency Tolerance</th>
<th>Emission Designator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80</td>
<td>9300 - 9500</td>
<td>4000</td>
<td></td>
<td>54M470N</td>
</tr>
</tbody>
</table>

October 2005
TCB Workshop
Aviation Services
VHF Rules

- 118-137 MHz (Equipment Class – TNB)
- R&O and FNPRM - FCC 03-238 (Docket 01-289) – in effect as of 9/13/04
- Requires FAA Coordination Prior to FCC Filing
- Removes waiver requirement for equipment with 8.33 KHz channel spacing
- Allows for dual spacing transceivers (i.e 25/8.33 KHz)
 - 8.33 KHz operation not allowed in US
Aviation Services
Radars

Similar to Marine (Part 80) Radars
Equipment Class – SRT
9300-9500 MHz
Very Few Grants
FAA Approval – Not Required
Aviation Services
Emergency Location Transmitter (ELTs)

- 121.5/406 MHz beacons carried aboard aircraft can usually be activated both manually and automatically by shock (using a crash sensor or G switch). False alerts w/G switch.
- Section 87.197 – ELT Test Procedures
- Section 87.199 – Special Requirements
- COSPAS/SARSAT approved test facility required
Aviation Services
ELTs - Standards

- FAA Standard TSO – C91A

87.139(h): For ELTs operating on 121.500 MHz, 243.000 MHz and 406.0–406.1 MHz the mean power of any emission must be attenuated below the mean power of the transmitter (pY) as follows:

(1) When the frequency is moved from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth the attenuation must be at least 25 dB;

(2) When the frequency is removed from the assigned frequency by more than 100 percent of the authorized bandwidth the attenuation must be at least 30 dB.
Questions and Answers

Thanks!