CRITICAL COMMUNICATIONS

IMPLICATIONS FOR 5G

PAUL STEINBERG
CHIEF TECHNOLOGY OFFICER
MOTOROLA SOLUTIONS
BUSINESS/MISSION CRITICAL INTELLIGENCE

ANALOG

DIGITAL

INFORMATION ENABLED

CRITICAL COMMUNICATIONS

CRITICAL INTELLIGENCE
5G CRITICAL COMMUNICATIONS
CAPACITY / COVERAGE / GOS NEEDS

Media Sharing, Virtual Reality, Telepresence & IoT become force multipliers, driving capacity needs with intense periods of high demand in incident scenes, coupled with a need for continual connectivity for IoT, personal communications & secure apps.

Critical communications requires secure, highly reliable & ubiquitous coverage, system resilience and graceful degradation.

Deployable systems with mesh, ad-hoc and direct mode network topologies needed to fill capacity & coverage gaps.

“Security by Design” – security is part of the design process from the beginning.
5G CRITICAL COMMUNICATIONS

TECHNOLOGY ELEMENTS

<table>
<thead>
<tr>
<th>DENSIFICATION</th>
<th>SPECTRUM SHARING</th>
<th>COVERAGE & CAPACITY</th>
<th>SECURITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massive increase in number of devices, sites, backhaul</td>
<td>Highly dynamic spectral reuse and interference management</td>
<td>Pervasive coverage (95%+) with high minimum throughput</td>
<td>5G enables an explosion of interconnected devices, and paradigms broadening the attack surface</td>
</tr>
<tr>
<td>SDN / NFV</td>
<td>mmWave (>10GHz spectrum with > 1 GHz channels)</td>
<td>Transparent to broad application ecosystem</td>
<td>Security must be “baked in”</td>
</tr>
<tr>
<td>Site density approaching 1 site per active user</td>
<td></td>
<td>Deployable mobile sites, repeaters, relays, ad-hoc and direct modes</td>
<td>5G standards and 5G devices</td>
</tr>
<tr>
<td>Latency reduction</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5G SMARTER MUST PROVIDE REQUIREMENTS FOCUSED ON BUSINESS/MISSION CRITICAL COMMS
SECURITY & 5G: IOT AS A DRIVER

2015 FCC TAC Cybersecurity WG key findings on IoT

• Perceived gaps:
 • There have been many security gaps publicly identified in existing IoT solutions
 • Many vendors lack knowledge around the secure SW development life cycle (SDLC)

• How industry is addressing these gaps:
 • Many industry orgs provide compliance requirements that includes security
 • Multiple industry best practices include CTA, CSA, NIST, FTC, DHS, OWASP

2016 FCC TAC Cybersecurity WG task around 5G Security

• FCC’s Goal for the WG
 • Recommend to the FCC the strategy, procedures and steps necessary to help incorporate the concept of “security by design” into the very fabric of 5G

• Proposed scope/direction
 • Leverage the 2015 TAC IoT work and focus on IoT applications of 5G technology
 • Create a list of key security principles that should be built into the 5G IoT ecosystem
 • Identify SDOs and develop an action plan to influence the standards development process
SECURITY & 5G: KEY CONSIDERATIONS

- 5G will enable greater connectivity and an explosion of interconnected devices, broadening the attack surface.
- Critical comms, critical infrastructure, ICS, healthcare, etc. drive the need for stronger security capability.

Technical considerations:
- Protection of dynamic spectrum enablers (e.g. DSA)
- Privacy enablers (e.g. ephemeral “thing” identifiers)
- Highly scalable deployment/maintenance models including SDN and NFV
- Crypto agility for greater interoperability & longevity
- IoT friendly, decentralized trust models
- User friendly and interoperable user authentication
- Rapid defense/response through edge and swarm intelligence

NIST Cyber Security Framework Core Functions:
- IDENTIFY
- PROTECT
- DETECT
- RESPOND
- RECOVER
WE INNOVATE TO MOBILIZE AND CONNECT PEOPLE IN THE MOMENTS THAT MATTER