Mobile Broadband Working Group

Jennifer Rexford
Princeton University
Two Studies: Depth and Breadth

<table>
<thead>
<tr>
<th></th>
<th>AT&T/FaceTime Case Study</th>
<th>Mobile Broadband Ecosystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>Mobile network operators (carriers)</td>
<td>Mobile broadband ecosystem</td>
</tr>
<tr>
<td>Openness</td>
<td>Transparency, blocking, traffic discrimination</td>
<td>Incentivizing innovation in mobile broadband</td>
</tr>
<tr>
<td>Time frame</td>
<td>Short term, single timely event</td>
<td>Long-term trends and principles</td>
</tr>
</tbody>
</table>
AT&T/FaceTime

• Apple FaceTime
 – High-quality video chat
 – Originally only on WiFi
 – Cellular starting Jun’12

• AT&T restrictions
 – Initially limited to MobileShare plan
 – Claims that AT&T violated the OIO
 – AT&T disagreed with these claims
 – AT&T gradually relaxed restrictions
AT&T/FaceTime Issues

• Pre-loaded application
 – Available to all users of popular phone
 – Accessed via device’s core calling features

• High bandwidth requirements
 – Symmetric usage, with asymmetric capacity
 – Limited adaptation in the face of congestion

• Staged deployment
 – Rapid adoption could lead to unpredictable load
 – Initially limit the number of users accessing an app

• Enforcement point
 – Usage limited on the device, not in the network
AT&T/FaceTime Perspectives

• Application developers
 – Blocking lawful applications chills innovation
 – Better to manage congestion directly
 – E.g., rate limits or usage-based pricing

• Carriers
 – AT&T has many “unlimited plan” customers
 – Staged deployment to prevent an overload
 – Apple allowed carriers to manage the app

• Equipment vendors
 – Pre-installed app that aggressively uses bandwidth
 – Alternative traffic-management approaches could have reduced overall quality of the customer experience
Mobile Broadband Ecosystem

• Seemingly virtuous cycle
 – Networks, mobile devices, apps, and users
• Complex inter-relationships
 – Apps, operating systems, and devices
 – Carriers and network equipment vendors
• Small number of dominant players
 – Smartphones: Apple, Samsung, LG
 – Operating systems: Google Android, Apple iOS
 – Carriers: Verizon, AT&T, Sprint, T-Mobile
 – Radio net: Ericsson, Alcatel-Lucent, Nokia-Siemens
Four Case Studies

• App stores
 – Screening, revenue sharing, app promotion,
 – Longer-term trend of HTML5
• Carrier service agreements
 – Device locking, tethering and app restrictions
 – Trend toward two-sided pricing (EU, Asia)
• Network-unfriendly apps
 – Chatty, unfair, or inefficient apps
 – Educating app developers and users
• WiFi offloading
 – Low-cost alternative for wireless broadband
 – Variable performance, security, and mobility
 – Enables greater competition and user choice
Conclusions

• Consider interactions between all players
 – Even those not subject to the OIO
• Track the trends affecting competition
 – HTML5, WiFi offloading, two-sided pricing, …
• Foster healthy mobile broadband ecosystem
 – Transparency
 – Education
 – Competition