Discussion on E911 Indoor Location Accuracy

November 18, 2013
Today’s Hybrid A-GPS/AFLT

- Outdoor fixes are rely predominantly on GPS measurements and highly accurate GPS only fixes are produced.
- Hybrid fixes use both GPS pseudo-ranges and CDMA Pilot measurements in the same trilateration calculation when an insufficient number of GPS pseudo-ranges are available for a GPS-only fix.
- Hybrid allows the maximum accuracy when a GPS-only solution is not possible (e.g., two or fewer GPS pseudo-ranges are available).
- Hybrid, perhaps AFLT only in some cases, allows for indoor coverage and nearly 100% yield.
- Enhanced Cell ID and Cell ID provide 100% yield.
- Carriers without AFLT today just use GPS E-CID, and CID.

This positioning technology represents the performance baseline.
Today’s Best Indoor Accuracy

- From The CSRIC Report

Newer methods (such as OTDOA and WLAN) improve E911 indoor performance

Figure 6.1.2-7. Indoor Accuracy by Morphology for Qualcomm
New Technologies Improving Indoor 911 Accuracy

- New Access Networks
 - 4G/LTE with OTDOA
 - WLAN
 - Signal strength and ranging measurements will be key for indoor positioning

- Support for New Technologies
 - LTE OTDOA is based on a highly detectable reference signal
 - Signaling associated with these new access networks allows for:
 - Better support for Multi-RAT / Hybrid positioning methods
 - Mobile provided solutions to be sent to the server

- Changes to Network Topologies
 - Small cells (Femto / Pico Cells) – aka “Hetnets” per the 3GPP standards
 - WLAN data offloading
 - Small Cells and Managed Access Points are a powerful positioning asset for wireless operators
Key Benefits of Wireless WAN (WWAN)

- Penetrates buildings – deep indoors
- If cellular networks are synchronized, ranging is possible from cell towers giving a position indoors
 - 4G/LTE networks are rolling out with synchronized base stations
 - WWAN positioning coverage for mobile user base will grow quickly
- Leverages existing infrastructure to do positioning
- Leverages existing LTE handsets
 - (e.g., uses LTE modem, no new handset hardware)
- Leverages trusted, accurate cell tower base station almanac of wireless operators
- Multiple bands available for ranging
- Strong ecosystem exists
Observed Time Difference of Arrival (OTDOA)

- Downlink positioning method (similar to AFLT) – but for 4G/LTE networks
- UE measures OTD’s (difference of TOA) from between eNB pairs
- Measurements are made on highly detectable Positioning Reference Signal (PRS)
- Designed to outperform AFLT (higher bandwidth, increased hearability, inter-frequency, etc.)
- OTDOA will be a useful indoor positioning technology
LTE OTDOA Advantages

- **Detectability of distant eNBs**
 - PRS was designed for a high level of hearability
 - Scrambling code isolation (cell specific)
 - Frequency re-use factor
 - There are 6 separate frequency bins that can separate PRS tones of neighbor cells
 - Each cell transmits PRS in one (cell specific) frequency bin and is not transmitting anything in other frequency bins -- this reduces significantly inter-cell interference
 - PRS muting
 - During some PRS occasions, some cells will not transmit any PRS; thus lower inter-cell interference
 - 1x CDMA AFLT uses only code isolation

- **Inter-Frequency OTDOA**
 - LTE Inter-Frequency Measurement Gaps as well as Carrier Aggregation allow UE to collect PRS measurements on multiple frequencies/bands in the same OTDOA fix
 - More cells can be detected
 - Provides frequency diversity of cells detected on multiple frequencies
 - 1x CDMA can not enable such a comparable Inter-Frequency AFLT

- **Multipath resolvability**
 - PRS with wider BW can resolve multipath more accurately
 - 20 MHz PRS has ~14 times better resolution for resolving multipath than 1.4 MHz
 - For 20 MHz PRS, in most scenarios a receiver can differentiate two clean multipaths ~10m apart
 - 1x CDMA AFLT multipath resolvability is limited to ~120 m
More Small Cells – Bring Network Closer to User

If the coverage area of the small cell is small enough no position technology is needed per se.

Wide Area
Macro Network

Hotspot
Low-cost outdoor/indoor solutions deployed by operator

Indoor
Very low-cost solutions, many deployed by user

Residential
Enterprise
Malls

Wi-Fi integrated with 3G/4G for indoor and hotspot offloading

Relay and Pico/Metro/RRH small cells for hotspots

Leveraging Heterogeneous Networks – HetNets
How to Leverage Wireless LAN (WLAN)

- WLAN information may be used to supplement cellular indoor positions
 - Specification of how to report WLAN MAC address as well as signal strength and time measurements along with the Cellular and GPS information
 - Specification of how to describe an alternative (potentially consumer LBS) position sent back to the server, be it from sensor aided, device specific database solutions, etc.

- Challenges
 - Multiple decentralized WLAN databases of unvalidated accuracy exist today
 - The need for and the issues with creating centralized WLAN database(s)
 - Legal clarification of liability for an inherently unreliable source

- Targeted / Phased Rollouts Possible
 - WLAN Data Offloading provides the carriers with managed WLAN databases to use for location

- WLAN solutions can be cross checked
 - Existing OTDOA / A-GPS methods can be used to validate the WLAN solution
WLAN Information in a 911 Call

Source: CSRIC Report on Indoor Location

E911 UP Call Flow with WLAN Support

- **SUPL Agent**
- **Location Server (E-SLP)**
- **SET (LTE device)**

- **SUPL INIT (posmethod, SLP mode, E-SLP address)**
- **SUPL POS INIT (SET capabilities, ver, lid, mlid*, position (O), SUPL POS (IS-801/RRLP/LPP/LPPe*))**
- **SUPL END ()**
- **SUPL POS (IS-801/RRLP/LPP/LPPe*)**
- **ELIR**
- **ELIA (posresult)**

- **Alternative location estimate / measurements & position source descriptors inserted here**

- **LPPe allows for a position to be returned as well, geographic or civic**
- **SUPL shown here, but LPPe is equally applicable to a control plane solution**
Thank You