Table of Contents

Upgrading From TVStudy 2.2.4
- Downloading the TVStudy Files ... 4
 - TVStudy Files Download Data Structure .. 5
- Notes About TVStudy Upgrades .. 6

Installing TVStudy for the First Time
- Installing TVStudy on a Mac .. 7
 - Installing and Configuring Prerequisites .. 7
 - Installing and Configuring TVStudy .. 8
 - Installing and Configuring Ghostscript .. 9
 - TVStudy Directory Structure .. 10
- Installing TVStudy on Linux .. 11
 - Installing and Configuring Prerequisites .. 11
 - Installing and Configuring TVStudy .. 11
 - TVStudy Directory Structure .. 13

Using the Propagation Model API .. 14

Compiling TVStudy from Source .. 15

Comments Regarding TVStudy on Windows .. 16

Using the TVStudy Database Utility .. 17

Using the TVStudy Command Line Tool ... 18

Launching TVStudy .. 19

Change Log
- Differences Between 1.3.2 (Patched) and Older Versions 20
- Differences Between 2.0 and 1.3.2 (Patched) .. 20
- Differences Between 2.0.1 and 2.0 ... 23
- Differences Between 2.0.2 and 2.0.1 .. 24
- Differences Between 2.1 and 2.0.2 ... 25
- Differences Between 2.2 and 2.1 ... 35
- Differences Between 2.2.1 and 2.2 ... 37
- Differences Between 2.2.2 and 2.2.1 ... 38
- Differences Between 2.2.3 and 2.2.2 ... 40
- Differences Between 2.2.4 and 2.2.3 ... 44
- Differences Between 2.2.5 and 2.2.4 ... 47

Troubleshooting
- Problems Running TVStudy ... 50
- Contact Information ... 50

Licensing Information
- TVStudy ... 51
- MySQL Libraries ... 52
- Apache Xerces Library ... 53
UPGRADING FROM TVSTUDY 2.2.4

The following text will guide you through the process of upgrading TVStudy 2.2.4 to the latest version, 2.2.5. It is strongly recommended that you upgrade only from version 2.2.4, since upgrading from older versions of the software could require you to drop and recreate the database. Otherwise, you should Uninstall and then Install the database again using the Manage Database window, instructions for which can be found at the beginning of the TVStudy manual.

Downloading the TVStudy Files

From the FCC TVStudy website, you will need to obtain one of the two files listed below.

2018Mar_tvstudy_mac_files.tgz – Contains all of the necessary code and executables to run TVStudy 2.2.5 on the Mac platform.
2018Mar_tvstudy_linux64_files.tgz – Contains all of the necessary code and executables to run TVStudy 2.2.5 on the Linux platform.

These files have been posted to https://www.fcc.gov/oet/tvstudy and can be downloaded by the end user. The .tgz file should then be unzipped to the directory that TVStudy is contained in, overwriting some older files. The .tgz file has the file structure found on the next page. The complete TVStudy directory structure can be found on page 10. Please note that the xml/ directory should only contain the one file shown on the next page.

The Terrain Database Test and Verification Utility has been updated with TVStudy 2.1. If you did not do so when upgrading to TVStudy 2.1, you should download the new version and place its files in the dbase/ directory.

Please see the notes on page 6 before attempting to launch TVStudy 2.2.5.

It is highly recommended that Mac users running Mac OS X 10.9 (“Mavericks”) or newer disable “App Nap”, if they have not already done so, since that operating system feature may cause poor performance with TVStudy. To do so, open a terminal and enter this command:

defaults write gov.fcc.TVStudy NSAppSleepDisabled -bool YES

It is also possible to disable AppNap on your system entirely, but the instructions for doing so are beyond the scope of this document.

You should now be done except for configuring Ghostscript (see page 9 for Mac or pages 11-12 for Linux), unless you need to recompile TVStudy. (See page 14 for more information on recompiling TVStudy.)

1 Please note that version 1.3.2 (Patched) was the software version of TVStudy used the incentive auction. This previous version still remains available for download at: http://data.fcc.gov/download/incentive-auctions/OET-69/.
TVStudy Files Download Data Structure

```
dev/
  build/  (empty)
  Makefile
  Manifest.txt
  Manifest_dbutil.txt

src/  (this is the source code for compilation)
  Makefile

help/
  manual.pdf

lib/
  api_login.props
  cdbfs_table_defs.dat
  check_install
  config.props
  convert Nedl3
  dbutil.jar
  dbutil.props
  fix_application
  land_mobile.csv
  land_mobile_exclude.csv
  land_mobile_waiver.csv
  monitor_station.csv
  mysql-jdbc.jar
  pair_study_post
  pgsql-jdbc.jar
  ptelev
  ptelev.conf
  sharing_guests.dat
  tvstudy
  tvstudy-api.jar
  tvstudy-core.jar
  tvstudy-gui.jar
  versions.dat
  xercesImpl.jar

xml/
  TVIXCheck.xml

tvstudy.jar
```
Notes About TVStudy Upgrades

TVStudy 2.x on the Mac no longer launches using the TVStudy.app launcher and must be launched with the tvstudy.jar file or from the command line using the same method as in Linux.

Attempting to import the November 2015 CDBS Extracts (or older) provided for incentive auction-related analysis into TVStudy 2.x will result in an error that the app_tracking.dat and am_ant_sys.dat files are missing. To correct this, simply download copies of those files from the current CDBS download files on the FCC website and place them in the directory with the extracts. The datasets should then import successfully.

TVStudy 2.x now requires the Java 8 JDK. Users of the Mac can download it here:

Linux users can use their normal method involving the package manager to install the openjdk-8-jdk package. If this is not available, Ubuntu users may need to run these commands first:

```
sudo apt-add-repository ppa:openjdk-r/ppa -y
sudo apt-get update
```

Please be sure the Java 8 JDK is installed before attempting to launch TVStudy 2.x. If you encounter problems when launching, try uninstalling older versions of Java. To uninstall Java 6 on the Mac, run these commands:

```
sudo rm -rf /System/Library/Java/JavaVirtualMachines/1.6.0.jdk
sudo rm -rf /Library/Java/JavaVirtualMachines/1.6.0*.jdk
```

To uninstall older Java versions on Linux, use the normal method involving the package manager. For example, an Ubuntu user may need to run this command:

```
sudo apt-get remove openjdk-7-jre icedtea-7-jre-jamvm openjdk-7-jre-headless
```

For Ubuntu users, please note that the FCC has now upgraded its Ubuntu installations from Ubuntu 14.04 to Ubuntu 16.04. This may cause unforeseen issues or inconsistencies for users of 14.04 versus the information contained in this installation guide. Additionally, you may now need to install the libmysqlclient20 package in order for TVStudy to run successfully. This may be the case if you receive the error message: “The study engine executable file is not properly installed. Editing may occur however no study runs will be performed.”

Please note that even if you are upgrading an existing installation of TVStudy, the database upgrade process may take up to 20-30 minutes because TVStudy 2.1 requires reimportation of all Census and population data. Previous upgrades, which did not require this step, went quicker. Please do not terminate your database upgrade early if it is taking a long time. If you are upgrading from a version older than TVStudy 2.2.4, be sure to download and install 2017Nov_tvstudy_data_updates.tgz.
INSTALLING TVSTUDY FOR THE FIRST TIME

In most cases, installing TVStudy is straightforward; both the Mac and 64-bit Linux versions come with pre-compiled executables. Compilation instructions are included in this document in case the user is attempting to install on a 32-bit Linux or would like to recompile after making modifications. (Modifications are not recommended if the intent is to produce results matching those produced by the FCC.) On the Mac platform, Mac OS 10.6 (“Snow Leopard”) or newer is required; the FCC is presently running Mac OS 10.11 (“El Capitan”).

Please note that the Terrain Database Test and Verification Utility may be useful if you experience problems with terrain or other underlying data files in TVStudy. You should download the utility and place its files in the dbase/ directory.

Disclaimer: The TVStudy software was developed using MySQL Community Server version 5.5.29 and has been tested with version 5.7.15; it may or may not work with other versions. The MySQL server typically runs on the same computer as TVStudy itself, and these instructions assume that this is the case. Please note that you must have administrator privileges on your computer to complete this process; you will be prompted to enter your password several times.

Installing TVStudy on a Mac

Installing and Configuring Prerequisites

Download a copy of MySQL Community Server from: http://www.mysql.com/downloads/mysql/

Open the “mysql-5.7.15-osx10.11-x86_64.dmg” disk image file. Install the package “mysql-5.7.15-osx10.11-x86_64.pkg”. Use the default install location. Be careful to note the password that MySQL sets for you; you will need it to set up MySQL for TVStudy. When it is finished installing, open System Preferences, select the “MySQL” icon, and click the button “Start MySQL Server”. The box “Automatically Start MySQL Server on Startup” may be checked so the server is always running. This should not affect normal computer operations. If you do not check the box, you will have to open System Preferences and make sure the server is running before each use of TVStudy.

Launch the Terminal application. At the prompt, open the MySQL monitor by entering:

 /usr/local/mysql/bin/mysql -u root -p

Enter the password you noted earlier. At the MySQL command prompt, enter the following commands, exactly as shown except for replacing the quoted text string ‘pass_here’ with your desired root password.

 ALTER USER 'root'@'localhost' IDENTIFIED BY 'pass_here';

Close the MySQL monitor by entering the exit command. You may now close the terminal window.

You may need to install Java 8 if it is not already installed. See the instructions on page 6.
Installing and Configuring TVStudy

From the FCC TVStudy website, you will need to obtain the three files listed below.

- **2013Jan_tvstudy_data_files.tgz** – Contains all of the necessary data files.
- **2017Nov_tvstudy_data_updates.tgz** – Contains updates to the necessary data files.
- **2018Mar_tvstudy_mac_files.tgz** – Contains all of the necessary code and executables.

Due to the large file size, **2013Jan_tvstudy_data_files.tgz** was split into seven segments of about 2 GB each. Those seven segments have been posted to https://www.fcc.gov/oet/tvstudy and can be downloaded, verified, and concatenated by the end user as described below. The resulting .tgz file is then unzipped to recover four data directories and their contents. The unzipped .tgz file is approximately 25GB in size. The seven segments can be concatenated using a concatenation utility such as [Split & Concat](https://www.fcc.gov/oet/tvstudy) to recreate the .tgz file.

To minimize the possibility of uncorrectable transmission errors, parity archive (PAR2) files with Reed-Solomon error correction (5% redundancy) were created. While not strictly required to recover the original .tgz file, it is recommended that the user also download the PAR2 files and use appropriate software to verify (and correct if necessary) the .tar file is complete. A number of no-cost applications are available for utilizing the PAR2 functionality to verify and correct the .tgz segment files, including [MacPAR Deluxe](https://www.fcc.gov/oet/tvstudy).

You should extract the files into a directory called TVStudy/ in the /Applications/ directory. Once these files are extracted, you should have a directory structure which looks like the one shown at the end of this section.

Three optional data files, **CDED, 2013Mar_nlcd**, and **2017Feb_nlcd**, are also available at the URL above. These contain high-resolution terrain data for Canada (Canadian Digital Elevation Data) and the 2006 and 2011 U.S. National Land Cover Data. The CDED dataset is about 34 GB in size and the NLCD datasets are each about 2 GB. There is some overlap of the USGS National Elevation Dataset (DEM, included with the 2013Jan_tvstudy_data_files) in Canada, so the CDED dataset should not be needed except for certain studies in Canada outside the U.S.-Canada border areas. Note, however, that the FCC uses the CDED dataset for all 1-second terrain calculations involving Canada and the NED and CDED elevation data are not identical, so to match FCC analysis results, the CDED data may be required. The 2006 NLCD is used as a reference for clutter adjustments in studies using the method of OET Bulletin No. 73 and is not used in the method of OET Bulletin No. 69 or OET Bulletin No. 74.

It is highly recommended that Mac users disable “App Nap” since that operating system feature will cause poor performance with TVStudy. To do this, open a terminal and enter this command:

```bash
defaults write gov.fcc.TVStudy NSAppSleepDisabled -bool YES
```

It is also possible to disable AppNap on your system entirely, but the instructions for doing so are beyond the scope of this document.

You may now proceed to the Launching TVStudy section of this document on page 18.
Installing and Configuring Ghostscript

If you do not wish to create image output maps in TVStudy, you may skip this section.

In order to create image output maps in TVStudy, the Ghostscript software needs to be installed. The best way to install it is to download and run the installer for the software which can be found here: http://pages.uoregon.edu/koch/

In order to use the image output functionality in TVStudy, a symbolic link needs to be created to the ghostscript executable and placed within the lib/ directory of your TVStudy directory. To do this, run the which gs command, which will give the location of the executable. For this example, the result of the command will be /usr/lib/gs. Then, navigate to the lib/ directory and run this command, modified to match your result:

```
ln -s /usr/lib/gs
```
TVStudy Directory Structure

/Applications/TVStudy/
cache/ (directory is initially empty)
cdbs/
 22Feb2012/ (this is CDBS data from February 22, 2012)
data/
 country_poly.dat (this is 2006 Census data for Canada)
 pop_ca_2006.dat (this is 2011 Census data for Canada)
 pop_ca_2011.dat (this is 2016 Census data for Canada)
 pop_mx_2010.dat (this is 2010 Census data for Mexico)
 pop_ca_2016.dat (this is 2010 Census data for the US)
 pop_us_2000.dat (this is 2000 Census data for the US)
 pop_us_2010.dat (this is 2010 Census data for the US)
dbase/
 cded/ (empty) (placeholder for Canadian terrain data)
 cem/ (223 files) (these are Mexican terrain data)
 gtopo/ (25,537 files) (these are 30-second terrain data)
 nadcon/ (28 files) (these are data for converting between datums)
 ned/ (1,964 files) (these are 1-second terrain data)
 ned13/ (empty) (placeholder for 1/3-second terrain data)
 nlcd/ (empty) (this is a placeholder for 2006 clutter data)
 nlcd2011/ (empty) (this is a placeholder for 2011 clutter data)
 srtm/ (719 files) (these are SRTM terrain data)
 usgs/ (1,362 files) (these are U.S. 3-second terrain data)
dev/
 build/ (empty)
 Manifest.txt
 Manifest_dbutil.txt
 src/
 help/
 manual.pdf (instruction manual for TVStudy)
 lib/
 api_login.props
 cdbs_table_defs.dat
 check_install
 config.props
 convert_ned13
 dbutil.jar
 dbutil.props
 fix_application
 land_mobile.csv
 land_mobile_exclude.csv
 land_mobile_waiver.csv
 monitor_station.csv
 mysql-jdbc.jar
 pair_study_post
 postgres-jdbc.jar
 ptelev
 ptelev.conf
 sharing_guests.dat
 tstudy
 tvstudy-api.jar
 tvstudy-core.jar
 tvstudy-gui.jar
 versions.dat
 xercesImpl.jar
 out/ (directory is initially empty)
 xml/
 TVIXCheck.xml
 tvstudy.jar
Installing TVStudy on Linux

These instructions assume the use of a Debian-based Linux distribution, such as the popular Ubuntu operating system. If you are using a different distribution, you will need to adjust these instructions accordingly. Additionally, the TVStudy executable provided was compiled for a 64-bit Linux system.

Installing and Configuring Prerequisites

To begin, you will need to install some prerequisites (MySQL server, Java, and PyPAR2). In a terminal window, enter the command:

```
sudo apt-get install mysql-server openjdk-8-jre pypar2 ghostscript
libmysqlclient20
```

The system should install the prerequisite software, and should then ask you to set a root password for MySQL. Please make sure to note the root password for MySQL, as you will need it to configure and run TVStudy. If you are not prompted to create a root password, you will need to open a terminal and open the MySQL monitor by entering:

```
mysql -u root
```

(Please note that if, at this point, you are entirely unable to log into MySQL, you may have to enter MySQL in safe mode to change the password. Instructions for doing this are beyond the scope of this installation guide but can be found online.)

At the MySQL command prompt, enter the following commands, exactly as shown except for replacing the quoted text string ‘pass_here’ with your desired root password.

```
ALTER USER 'root'@'localhost' IDENTIFIED BY 'pass_here';
```

Close the MySQL monitor by entering the `exit` command.

Installing and Configuring TVStudy

From the FCC TVStudy website, you will need to obtain the three files listed below.

- `2013Jan_tvstudy_data_files.tgz` – Contains all of the necessary data.
- `2017Nov_tvstudy_data_updates.tgz` – Contains updates to the necessary data files.
- `2018Mar_tvstudy_linux64_files.tgz` – Contains all of the necessary code and executables.

Due to the large file size, `2013Jan_tvstudy_data_files.tgz` was split into seven segments of about 2 GB each. Those seven segments have been posted to https://www.fcc.gov/oet/tvstudy and can be downloaded and concatenated by the end user. The resulting .tgz file is then unzipped to recover the four data directories and their contents. The unzipped files are approximately 25GB in size. Once the seven segments are recovered, they can be concatenated using the `cat` command to recreate the .tgz file.

A sample command to concatenate the seven pieces is:

To minimize the possibility of uncorrectable transmission errors, parity archive (PAR2) files with Reed-Solomon error correction (5% redundancy) were created. While not strictly required to recover the original .tgz file, it is recommended that the user also download the PAR2 files and use appropriate software to verify (and correct if necessary) the .tar file is complete. A number of no-cost applications are available for utilizing the PAR2 functionality to verify and correct the .tgz segment files, including the PyPAR2 utility installed previously.

To extract the files, you can use a GUI archive tool, or run this command for each .tgz file:

```
tar -xzvf <name of file with .tgz at the end>
```

Once these files are extracted, you should have a directory structure which looks like the one shown at the end of this section.

Three optional data files, CDED, 2013Mar_nlcd, and 2017Feb_nlcd, are also available at the URL above. These contain high-resolution terrain data for Canada (Canadian Digital Elevation Data) and the 2006 and 2011 U.S. National Land Cover Data. The CDED dataset is about 34 GB in size and the NLCD datasets are each about 2 GB. There is some overlap of the USGS National Elevation Dataset (DEM, included with the 2013Jan_tvstudy_data_files) in Canada, so the CDED dataset should not be needed except for certain studies in Canada outside the U.S.-Canada border areas. Note, however, that the FCC uses the CDED dataset for all 1-second terrain calculations involving Canada and the NED and CDED elevation data are not identical, so to match FCC analysis results, the CDED data may be required. The 2006 NLCD is used as a reference for clutter adjustments in studies using the method of OET Bulletin No. 73 and is not used in the method of OET Bulletin No. 69 or OET Bulletin No. 74.

In order to create image output maps in TVStudy, a symbolic link needs to be created to the ghostscript executable and placed within the lib/ directory within your TVStudy directory. To do this, run the `which gs` command, which will give the location of the executable. For this example, the result of the command will be `/usr/lib/gs`. Then, navigate to the lib/ directory and run this command:

```
ln -s /usr/lib/gs
```

Be sure to alter the command to match your result.

If you are using a Linux installation that is not 64-bit, or otherwise determine that you need to compile TVStudy from source, please continue to page 14. Otherwise, you may advance to the Launching TVStudy section of this document on page 18.
TVStudy Directory Structure

- **cache/** (directory is initially empty)
- **cdbs/**
 - 22Feb2012/ (this is CDBS data from February 22, 2012)
- **data/**
 - country_poly.dat (this is 2006 Census data for Canada)
 - pop_ca_2006.dat (this is 2006 Census data for Canada)
 - pop_ca_2011.dat (this is 2011 Census data for Canada)
 - pop_ca_2016.dat (this is 2016 Census data for Canada)
 - pop_mx_2010.dat (this is 2010 Census data for Mexico)
 - pop_us_2000.dat (this is 2000 Census data for the US)
 - pop_us_2010.dat (this is 2010 Census data for the US)
- **dbase/**
 - cded/ (empty) (placeholder for Canadian terrain data)
 - cem/ (223 files) (these are Mexican terrain data)
 - gtopo/ (25,537 files) (these are 30-second terrain data)
 - nadcon/ (28 files) (these are data for converting between datums)
 - ned/ (1,964 files) (these are 1-second terrain data)
 - ned13/ (empty) (placeholder for 1/3-second terrain data)
 - nlcdd2011/ (empty) (this is a placeholder for 2006 clutter data)
 - srtm/ (719 files) (these are SRTM terrain data)
 - usgs/ (1,362 files) (these are U.S. 3-second terrain data)
- **dev/**
 - build/ (empty)
 - Makefile
 - Manifest.txt
 - Manifest_dbutil.txt
 - src/ (this is the source code for compilation)
- **help/**
 - manual.pdf (instruction manual for TVStudy)
- **lib/**
 - api_login.props
 - cdbcs_table_def.dat
 - check_install.props
 - config.props
 - convert_ned13
 - dbutil.jar
 - dbutil.props
 - fix_application
 - land_mobile.csv
 - land_mobile_exclude.csv
 - land_mobile_waiver.csv
 - monitor_station.csv
 - mysql-jdbc.jar
 - pair_study_post
 - pgsq1-jdbc.jar
 - ptelev
 - ptelev.conf
 - sharing_guests.dat
 - tvstudy
 - fix_application
 - tvstudy-api.jar
 - tvstudy-core.jar
 - tvstudy-gui.jar
 - versions.dat
 - xercesImpl.jar
- **out/** (directory is initially empty)
- **xml/**
 - TVIXCheck.xml
 - tvstudy.jar
USING THE PROPAGATION MODEL API

TVStudy 2.1 and newer supports multiple propagation models. By default, TVStudy comes with three models:

1) Longley-Rice
2) FCC curves
3) Free space

While the latter two are not strictly “propagation models” in the traditional sense, the point is that they can be used as if they are propagation models on a cell-by-cell basis.

Additionally, and more importantly, TVStudy now provides an API in C such that developers outside the FCC can implement their own propagations models in TVStudy if desired. To learn more about this API, open the dev/src/model directory and read the instructions contained in the comments weaved throughout the model.c and model.h files. The inclusion of FCC curves and free space as models were designed to provide additional examples of how propagation model code could be written with the new API beyond the single Longley-Rice model that was included previously.

To compile the modified code, follow the compilation instructions on the following page.

In order to use your alternate propagation models in TVStudy, you must recompile your code and then restart TVStudy. At start-up, the TVStudy Java UI queries the C utility to determine which propagation models are available and will then display them accordingly. If the Java UI is not restarted, it will have no way of knowing that new models are available.
These instructions assume the use of a Debian-based Linux distribution, such as the popular Ubuntu operating system. If you are using a different distribution or the Mac, you will need to adjust these instructions accordingly.

In your terminal, enter the following command:

```bash
sudo apt-get install openjdk-8-jdk gfortran libmysqlclient-dev
```

This will install the additional prerequisites necessary to compile TVStudy.

You are now ready to build TVStudy. Enter:

```bash
cd dev
make
```

Waiting a few seconds should result in newly-compiled `tvstudy` executable and JAR files. If it does not, you may need additional prerequisites or you may need to make additional modifications to `dev/src/tvstudy.h` or `dev/Makefile` in order to compile TVStudy successfully. Those instructions are beyond the scope of this document. Then enter:

```bash
make install
cd ..
```

These commands should place you back in the folder in which you placed the TVStudy files and allow you to continue to the "Launching TVStudy" section of this document on page 18.

Note: If you are using CentOS or another Red Hat-based operating system, you may need to adjust your Makefile. In CentOS, `libmysqlclient.so` is located in `/usr/lib64/mysql`, as opposed to `/usr/lib/x86_64-linux-gnu` as it is on Debian-based operating systems.
COMMENTS REGARDING TVSTUDY ON WINDOWS

An executable version of TVStudy is not provided for the Windows platform, but there is no reason to believe that it should not be possible to compile and run TVStudy on Windows with some modification to the code. As such, this section is designed to obtain the appropriate files necessary, short of actual compilation of the code. As an alternative to compiling the TVStudy source code for direct execution under Windows, the user may wish to consider installing a virtual OS environment (such as Ubuntu under Oracle’s VirtualBox) and running one of the supplied executables in a virtual machine.

From the FCC TVStudy website, you will need to obtain the data files and one of the two platform-specific files listed below.

- **2013Jan_tvstudy_data_files.tgz** – Contains all of the necessary data files required to run TVStudy successfully. All users need to download this file.
- **2017Nov_tvstudy_data_updates.tgz** – Contains updates to the necessary data files.
- **2018Mar_tvstudy_mac_files.tgz** – Contains all of the necessary code and executables to run TVStudy on Mac OS or to compile TVStudy for Mac OS.
- **2018Mar_tvstudy_linux64_files.tgz** – Contains all of the necessary code and executables to run TVStudy on 64-bit Linux or to compile TVStudy for Linux.

Due to the large file size, **2013Jan_tvstudy_data_files.tgz** was split into seven segments of about 2 GB each. Those seven segments have been posted to https://www.fcc.gov/oet/tvstudy and can be downloaded and concatenated by the end user. The resulting .tgz file is then unzipped to recover the four directories and their contents. The unzipped files are approximately 25GB in size. The seven segments can be concatenated using 7-Zip. Once 7-Zip is installed, right-click on the first segment (.001) and choose “Extract files...” from the menu.

To minimize the possibility of uncorrectable transmission errors, the seven segments have been used to create parity archive (PAR2) files with Reed-Solomon error correction (5% redundancy). While not strictly required to recover the original .tgz file, it is recommended that the user also download the PAR2 files and use appropriate software to verify (and correct if necessary) the eight segments comprising the .tar file. A number of no-cost applications are available for utilizing the PAR2 functionality to verify and correct the .tgz segment files, such as Multipar.

Please note that you will need to install Java 8 and MySQL in order to use TVStudy. You are strongly advised to read either the Mac or Linux installation section in full in order to ensure you have the installation fully configured.
Using the TVStudy Database Utility

USING THE TVSTUDY DATABASE UTILITY

TVStudy has the ability to manage its internal database, as well as the datasets within it, from the command line. This gives users the ability to set TVStudy to automatically download the daily dump of LMS or CDBS by adding a job to crontab (on Linux) or by otherwise using the normal method of automating tasks (on Mac).

To access this utility directly, navigate to your TVStudy directory, and then run:

```
java -jar lib/dbutil.jar
```

This utility allows database installation, update, un-installation, and station data download and import, to be performed from a command-line environment. Running without any further commands will print usage details.

Database host and user can be provided by command option, and password entered interactively. Alternately, login information can be placed in a new properties file, lib/dbutil.props, using property keys "host", "user", "name", and "password". The "name" is optional, and is for supplying an alternate root database name for multiple installations on the same server. If "name" is not specified it defaults to "tvstudy", which is the default name used in a typical TVStudy installation. The password is stored in cleartext, so if you are concerned about password security, the file should have limited permissions, i.e. only owner read and write.

For automating the download and import process, here is an example of how to automate the download and import of LMS data every day at 5AM on Linux. Run "crontab -e" and then add this line to the bottom of the file, adjusted for the location of your TVStudy directory:

```
0 5 * * * cd /home/username/tvstudy && java -jar lib/dbutil.jar download lmstv
```

Save and quit. Every day, when 5AM strikes, the LMS download and import process should occur automatically.
USING THE TVSTUDY COMMAND LINE TOOL

TVStudy comes with a command line tool which exposes several of the useful internal functions of the software such that they can be run separately or scripted for other purposes. This tool is called ptelev (from its original function, to look up ground elevation at a point) and is found in the lib/directory. To run correctly, it must be called from the root of the TVStudy installation.

The tool is configured using the lib/ptelev.conf file. This file contains various settings for the command line tool. Be sure these are set the way you want them to get the answers you expect.

The command operates in the following manner:

```
lib/ptelev <switch> <mode number> <inputs>
```

To see all of the details, run `lib/ptelev help` and you will get a full set of switches, numbers, and required inputs. The number sets which function the software performs, and these are as follows.

Mode 1 – Ground elevation at a point.
Mode 2 – Convert NAD83 coordinates to NAD27.
Mode 3 – Convert NAD27 coordinates to NAD83.
Mode 4 – Calculate HAAT from RCAMSL.
Mode 5 – Calculate HAAT from RCAGL.
Mode 6 – Determine the distance provided by the FCC Curves for given parameters.
Mode 7 – Determine the ERP required to reach a distance with FCC Curves.
Mode 8 – Calculate RCAGL from RCAMSL.
Mode 9 – Calculate RCAMSL from RCAGL.
Mode 10 – Calculate RCAGL from HAAT.
Mode 11 – Calculate RCAMSL from HAAT.
Mode 12 – Distance and bearing from point to point.
Mode 13 – Coordinates from point to a distance and bearing.
Mode 14 – UHF dipole factor adjustment.
Mode 15 – Land clutter at a point.
Mode 16 – Terrain profile from point to point.
Mode 17 – Terrain profile from a point to a distance and bearing.
Mode 18 – Field strength from point to point.
Mode 19 – Field strength from a point to a distance and bearing.

Additionally, TVStudy provides a stand-alone nadcon utility, which can be built by running `make nadcon` in the dev/ directory. This utility will run with nothing more than dbase/nadcon available, making it possible to perform NADCON conversions one by one or with a script while using very little disk space.
Launching TVStudy

LAUNCHING TVSTUDY

Use a terminal window to launch:

```
java -jar tvstudy.jar
```

Please note that the TVStudy.app file provided with TVStudy 1.3.2 (Patched) and earlier no longer works properly with TVStudy 2.x. Launching tvstudy.jar from the command line (on Linux or Mac), is now the proper method for launching TVStudy.

On the Mac, prior to launching TVStudy 2.x, you will need to install Java 8. This can be downloaded from the Oracle Java website, and instructions for its installation are found on page 6.

Upon first login, TVStudy will open the “Manage Database” window and prompt you to update your database to the latest version if you are upgrading, or install the root database for a new installation. Click “Update” or “Install,” as appropriate, and it will do so automatically, taking up to about 20 minutes, though it could be more depending on the speed of your computer.

For instructions on using TVStudy, please refer to the TVStudy manual.
CHANGE LOG

Differences Between 1.3.2 (Patched) and Older Versions

The change logs for older versions of TVStudy have been removed from this document. However, the Installation and Upgrade Guide for 1.3.2 (Patched) is still available at the link below, and contains the changelog for all previous versions of TVStudy.

Differences Between 2.0 and 1.3.2 (Patched)

The Mac version of TVStudy 2.0 can no longer use the TVStudy.app file contained with past TVStudy releases. On a Mac, TVStudy 2.0 may be started by directly opening the tvstudy.jar file from Finder, or from the command line using the same method described in the manual for Linux.

Updated the stations.csv file output during a pair study to specify NAD83 coordinates rather than NAD27 coordinates. All TVStudy outputs now have NAD83 coordinates in them.

Corrected the treatment of Digital Replacement Translators (DRTs) which were previously being treated as mutually exclusive with the parent station even when they operate on different channels. However, please note that if two DRTs are on the same channel and within 30 km of each other, they will still be treated as mutually exclusive.

Improved caching functionality when using smaller cell sizes. TVStudy now writes to cache after calculating 1,000,000 fields instead of waiting for all field calculations to be complete. This prevents TVStudy from waiting, for example, more than an hour before writing to cache when using 0.1 km cell size.

Added the ability to queue studies. This means that if you start multiple pair studies, or more non-pair studies than the amount for which memory has been allocated, TVStudy will treat them as a queue and run the studies in the order they are started.

TVStudy now outputs the parameters in a separate tvstudy_settings.txt output file, instead of at the bottom of the tvstudy.txt file. This tvstudy_settings.txt file also contains the rules used in the study.

TVStudy can now output detailed and summary tvstudy.txt files. The summary tvstudy.txt file is primarily useful with the new Interference Check study mode.

Added the ability to output KML map files as an alternative to the ESRI ShapeFile map files.

A new cell file output format is available called "Detail CSV". This creates a set of CSV files with equivalent information as the existing detail cell file format.

Map file output now includes undesired station records in the "sources" file.
Change Log

Differences Between 2.0 and 1.3.2 (Patched)

Station data, e.g. CDBS, LMS, and study templates, are no longer managed from the “New Study” window. Separate “Station Data Manager” and “Template Manager” windows are now used to import, export, and generally manage station data sets and study templates. Station data may also be viewed in a separate station data search window without first creating a study and scenario.

Added the ability to import station data from LMS download files.

CDBS data imports now require additional download files, as noted in Appendix B of the TVStudy 2.0 Manual.

TVStudy can now adapt to changes in CDBS and LMS download file structures without requiring a full update to the software, as long as the changes do not directly affect the table columns used by TVStudy. For LMS data this process is fully automatic because the column names are embedded in the download files themselves. For CDBS data a new table definition file installed with TVStudy, “lib/cdbs_table_defs.dat”, provides the column names. Most changes to CDBS can be handled by updating that file alone. However, with CDBS there is no "backwards compatibility"— if the table definitions file is updated, TVStudy will no longer be able import CDBS data in the earlier format(s). A potential workaround could be to keep multiple versions of the table definitions file and manually exchange the installed file as needed. Please note that TVStudy must be shut down and restarted any time this lib/cdbs_table_defs.dat file is changed.

Added the ability to create and permanently save new station records in a “User Records” data set. New records may be created from scratch, or by duplicating and modifying records from an imported station data set. Each user record is assigned a permanent ID number that may be used to locate the record again in the future. The user records data set may also be searched by call sign, etc. as with other station data sets. Currently, user records cannot be deleted.

The station data search window has greatly enhanced capabilities. This window appears when adding a single station record to a scenario in a study. The window may also appear in other contexts, such as when viewing station data outside any study. This window allows searching station data by various criteria, as before. It now also allows any record appearing in the search results to immediately be viewed in a record editor while the search window is still active. It is also possible to create and edit new records, and if appropriate, save those as user records. Individual station records may also be imported and exported using XML files.

Added the ability to conduct interference check studies, as tv_process, the FCC’s application processing tool, does. This includes the functionality which checks distance to AM stations, distance to the border, distance to land mobile and monitoring stations, and other functions familiar to those who use tv_process or similar tools. Please note that while the baseline analysis mode is fully functional in this version of TVStudy, it will likely be modified in a future TVStudy release upon additional guidance from the Media Bureau.

Created a new study type for evaluating interference between FM stations using procedures analogous to those described in OET Bulletin 69. FM station data sets can be imported from CDBS download files, or FM records can be created manually within the application.

Created a new study type for evaluating interference from wireless base stations to TV station coverage, using the procedures described in OET Bulletin 74. Wireless base station data sets can be
imported from CSV files, or wireless records can be created manually within the application. In the new study type, wireless records can be added to study scenarios along with a desired TV station record and optional undesired TV stations for "masking" interference. Wireless records do not have frequency and bandwidth values when first imported, those values are assigned to all wireless records in a particular study scenario using parameters.

When a study is run, default values are now automatically applied to study parameters that don’t already exist in a particular study. It is no longer necessary to manually open and save all studies after a software update has added new parameters to the default template.

Added a separate parameter for the number of radials used in calculating HAAT. The old HAAT radial switch is now used exclusively to set the number of HAAT radials used in computing the contour.

Added parameters to support a range of “Rule Extra Distances.” The extra distance is added to interference rule culling distances to ensure that initial searches done using station-to-station distances will not miss stations that are close enough to pass the station-to-cell distance check done in the actual study. The changes allow this distance to vary by desired station ERP, so smaller distances are used for stations that will have smaller service contours, reducing the number of unnecessary stations included in a search.

A new filtering capability has been added to tables that list station data records and interference rules in various user interface contexts. A set of menus appearing below the table can be used to "drill down" into the table contents by selecting filter terms by column.

Any study can now contain records from many different imported station data sets. When a study is first created an associated data set may still be selected, however that is now just a default for the user interface and is no longer required; the data set menu has a "(None)" option. Regardless of the selected default, any available data set may be chosen during searches that add records to a study scenario.

Frequency in MHz is now displayed alongside channel for TV and FM stations.

TVStudy now has a web API, and a servlet for use with Apache Tomcat is available on the TVStudy website. However, since this is an advanced function intended primarily for software developers and is not one used by OET, no support is being provided for this functionality.
Differences Between 2.0.1 and 2.0

Fixed bugs in the table filtering code affecting station record tables in the scenario editor and record search dialog. Attempting to select and take action on a record while the table content was filtered would lead to various failure conditions due to the selection not always being mapped through the filter.

Fixed bug in parameter UI, when viewing parameters in a study or template with parameters locked, the pop-up table for editing wireless culling distances would still allow values to be changed, although the changes would not be saved.

Scenario parameters are now included in scenario XML export/import.

Wireless station bandwidth now appears in study reports.

Parameters have unit labels (kW, dB, etc.) in the UI and the parameter summary report. The parameter summary is re-formatted to be more readable.
Differences Between 2.0.2 and 2.0.1

The study engine code that does the checks of land mobile protections, monitor stations, etc. for an interference-check study has been rewritten. This includes fixing the land-mobile check and adding a new check for the 74.709(e) offshore radio service protection. The report output is expanded; more details will appear in the Report tab in the UI as well as the output file. This includes the operating parameters for all sites in a DTS operation; antenna ID, name, and orientation as relevant; and showing the actual heights and ERPs even when those are derived. The list of stations potentially affected includes a distance column. For the land mobile and monitor station checks, the coordinates and other parameters have been moved to CSV data files located in the lib/ directory for easier updating in the future.

Changed record status determination logic for both CDBS and LMS to mark records with facility status FVOID as archived regardless of other flags. Also improved detection of STA status so more STA records are correctly identified.

Changed the interference-check study build logic to exclude STA records and analog Class A records, which should not have been included. This significantly reduces the number of “leaf count too high” errors.

Added check for horizontal pattern data that is all zeroes and treats that data as omni-directional.

Fixed a bug in study engine queries to eliminate an ambiguous reference error.
Differences Between 2.1 and 2.0.2

TVStudy 2.1 is the result of many months of work. This work was undertaken to fully implement the TV IX Check mode, convert the software to function entirely in the NAD83 datum, and provide new features and improved performance. During this process, much of the code in TVStudy was examined, edited, reorganized, and/or corrected along the way. As such, this changelog lists all major changes/updates but does not name every individual issue which has been addressed since the 2.0.2 release.

Interference (IX) Check

The TV Interference (IX) Check mode, initially released as a beta version in 2.0 through 2.0.2 for trial testing, has been extensively modified and now more closely matches the processes used by the older tv_process software. The TV IX Check study setup dialog has been removed as all of the settings can now be managed in other locations in the software. Every TV IX Check study outputs a file named “tvixstudy.dat” which mimics the output of tv_process. Studies in this mode conducted with TVStudy 2.0.2 or older should be discarded and recreated in TVStudy 2.1.

In the TV IX Check mode, it is now possible to name a study when run from the Java UI.

When running a TV IX Check study from the GUI and replicating the study record, you can now put multiple channel numbers in the "Rep. Channel" box using commas and dashes (e.g., "15,16,18-22"). TVStudy will automatically queue up one study run for each channel. To keep the studies from causing duplicate name errors, TVStudy adds " (on NN)” to the end of the study name, where NN is the replication channel. When creating a series of TV IX Check studies for multiple replicated channels, the study record’s own channel may be included in the channel list even for a digital study record. That will cause the wizard to automatically set up a non-replicated study for the record, in addition to one or more replicated studies. This will be done only when more than one channel appears in the replication channel field; entering the same channel as a single channel input for a digital record results in an error. Entering the same channel in any manner for an analog study record is not an error; that will create a study for on-channel replication to digital service. To get a non-replicated study for an analog record the replicate option must not be checked.

TV IX Check mode supports the 1% contour increase and 5% population decrease tests that will be used during the first 90 days after the Incentive Auction Closing and Channel Reassignment Public Notice is issued. Additionally, to facilitate post-auction filings, TVStudy has the ability via a study parameter to exclude records filed before a specific date unless there is an associated baseline record on that channel. This will allow applications to be analyzed with respect to post-auction records.

There is no longer a setting to select the station data used for the AM station search in TV IX Check mode. If no suitable data set is found, the study run will note in the report output that the AM check could not be performed, then proceed with the rest of the study. (See below for more information on the AM check.)

The default study template for TV IX Check mode can be set by naming a suitable template “Interference Check”. Similarly, the default output file settings can be set by naming those settings “Interference Check”. It is also possible to set a default set of station data in the same manor, but it
is more likely that you will want to use the “Most recent TV” data option, which is the default if a station dataset named “Interference Check” does not exist.

Added a filing cut-off date field to the wizard dialog and web servlet form for setting up TV IX Check studies. Entering a date in this field will cause records with a sequence date on or after the cut-off date to be excluded from the study. If the study record is an LPTV/translator, the exclusion applies only to other LPTV/translator records. If the study record is full-service or Class A, the exclusion applies to all records. Note that this feature is not a "roll-back" to a previous point in time. In other words, it does not deal with records that are archived when the study is run but were not archived as of the cut-off date.

TV6<->FM

Implemented TV6<->FM interference study mode. The options for FM into DTV 6 interference are to use 73.525 directly with extrapolation to DTV service levels, or use a fixed D/U table derived from the 2007 NPR report.²

Geographies/Recv Pats

TVStudy can now perform analyses on individual fixed location points. These points are defined using the new “Geography Editor” that can be used for various alternate study analyses, not just points mode. Additionally, points can be analyzed using alternate user-provided receive antenna patterns. A receive pattern can have different azimuth patterns for a set of frequencies, edited in a manner similar to a matrix elevation pattern. Both geographies and receive antenna patterns can be imported and exported.

Alternate Service Areas

Added the ability to project contours by various new methods, including contours based on Longley-Rice projections, or FCC contours with a fixed distance or percentage added. In the study parameters, a default contour mode can now be set which applies to all desired stations in the study that have the default contour service area mode.

New parameters to select different methods of determining study point location(s) in each cell have been added. These are population-weighted centroid of Census points in cell (existing method), geographic center of the cell, largest Census point in cell, and all Census points in cell (each point gets actual population and a fraction of cell area based on total population in the cell). There is a second new parameter to choose whether or not to use the actual Census point location that is nearest to the previously-determined location.

Changed the undesired record search in the study engine to use the actual service area boundary instead of the "rule extra distance" approximation. However, the check of the actual boundary vs. the extra distance with a warning if the extra distance is too small still occurs, since the GUI

application still uses the extra distance algorithm for scenario-building searches. If the warning appears from the study engine, some undesireds may not have been included in the scenario.

Datasets

All coordinates in all station datasets are now stored in the NAD83 datum. For LMS datasets, this means TVStudy has moved from using the NAD27 fields to the NAD83 fields. For CDBS datasets, this means that TVStudy converts all of the coordinates when the dataset is imported or, for datasets already in TVStudy during the database update, at update time. A consequence of this change is that new XML exports now use different attribute names for coordinates, LATITUDE83 and LONGITUDE83, which are unambiguously NAD83. The previous attribute names LATITUDE and LONGITUDE are generally assumed to be NAD27 coordinates during import, except for wireless records which have always been NAD83. For the sake of clarity, XML import now recognizes attributes LATITUDE27/LONGITUDE27 to explicitly provide coordinates in NAD27.

"Most recent" options now appear in menus for selecting station data for a record search or study build. These options automatically select an appropriate imported data set with the most recent data. The test is based on the content of the import, not when it was imported. Most-recent items are provided for LMS TV, CDBS TV, and CDBS FM, plus a "Most recent TV" option that will select either LMS or CDBS. Wireless data sets do not contain date information so this feature is not available for those.

Imported data sets are no longer considered "in use," allowing a data set to be deleted at any time. Existing studies built from a now-deleted data set can still be used and further modified using data from any currently-available data set. However, in such a study it may not be possible to revert a record that has been made editable because the original data set is no longer available.

During LMS record translation, the city and state are now retrieved from fields in the application_facility and lkp_dtv_allotment tables, rather than the facility table. However, call signs are still retrieved from the facility table for consistency with CDBS. CDBS translation continues to use the facility table for all three pieces of information.

Call sign searches will now match regardless of leading D characters appearing in the database fields, e.g. a search for WXYZ will also match DWXYZ. However, a search for DWXYZ will not match WXYZ.

A new record status has been added for experimental facility records. The status EXP is assigned when the facility status field contains "EXPER". The EXP status is assigned regardless of the underlying APP/CP/LIC/STA status; that underlying status is no longer available.

Fixed an issue where the optional name for an imported data set was not being checked for uniqueness during import. This is now checked; however, the import does not fail if the name is not unique, the name is just not saved. The name can be changed later as needed.

TVStudy now displays CDBS-style antenna ID number for LMS records instead of a UUID string.

AM station data tables in LMS are now supported. The table files will be read during an LMS data set import if possible, however the files are not required. If the AM files are missing, the import will
continue but AM data will not be available in that data set. The AM station search done during an TV IX Check study using an LMS data set will now attempt to query the LMS AM tables. If those tables are not present, e.g. the files were not present at import, or if any error occurs during the queries, the AM check will not be performed but the study will otherwise continue. Note this feature is only partially tested because the AM files do not yet appear in LMS downloads. Sample files were used to simulate the presence of the data for testing. However, if the actual files that eventually appear in the LMS downloads do not have the same structure as the samples, future LMS imports with AM data could fail entirely. If the files are present, they must be in the expected format; apparent errors within the files are not ignored.

New "generic" data set import capability has been added. The concept here is that a generic data set is created empty, then once it exists you can import things into that set from any format supported (currently just XML). Then you can add more by importing more things in the same or different formats. In other words, the data set is not just a single fixed import, you can build a whole database by importing pieces from different sources. This is a work in progress and is expected to be updated in a future release.

Wizards/Windows

Expanded the UI for creating types of studies that pre-select a target record (i.e. TV IX Check and TV6->FM) to allow the selected record to be replicated to a different channel before starting the study.

Changed the logic for assigning study names to studies created with the "wizard" dialogs, e.g. TV IX Check. The name entered in the dialog no longer has to be unique. When the study is actually created, if the name already exists, a numerical suffix e.g. "(123)" will be appended to make the new name unique.

The separate run windows have been replaced with a single “Run Manager” window which contains all of the runs that are active or completed and not yet removed.

Study-build dialogs now have two action buttons, “Build” and “Build & Run.” The Build button will cause the study build to occur (in the run manager as usual) but without a subsequent run of the study. Build & Run builds and then runs the study as in previous versions.

Addressed editing issues in the scenario and record editors in TV IX Check, wireless -> TV, and TV6->FM studies. To prevent the scenario from inadvertently being made invalid, the channel and geographic location of the study record now cannot be changed even if the record is otherwise editable. This includes not allowing the record to be replicated, or if it is already a replication, not allowing it to be reverted to the original channel. Also, for a DTS record, individual DTS sites cannot be added or removed.

Output

TVStudy now sets the output file selection in an output settings window. It is possible to save preferred configurations of output files and map files and choose them at run-time or while configuring the study. The output file options and the map file options are on separate tabs.
The scenario name is now written in the KML output file <NAME> element instead of just the file name.

TV IX Check study runs now have the option to only output detail files as requested for scenarios that fail the interference check.

Restored antenna ID value to parameters CSV file, and when replicating by equal-area method, the antenna ID from the original record is preserved.

Created composite coverage output as a new option in the output file settings for examining combined coverage across multiple desired station records. When selected, there will be a composite coverage total in both the summary and detail report files, and if map files are requested, a composite coverage points file is created called "cmpcvpts". The point coordinates in the composite map files are always the cell center point, not the actual study point in the cell. If selected, the composite map output will be generated using the cell center point regardless of the mode used to define study points in cells. If the "all Census points" mode is used, all points in a given cell will be considered individually when accumulating the final result for that cell. That means if just one of those study points has coverage, the composite output will indicate the entire cell has coverage, which limits its usefulness and is not recommended. Note that the points output files ("points" in the map files and the "points.csv" file) benefit from the new code added to support composite mode. Regardless of whether composite mode is active, the new code for determining the coverage status across the entire cell grid for a scenario is used to support the points output. As a result, those outputs will no longer contain duplicate points.

New map output settings have been added. Provides options for additional columns in the coverpts file, as well as general options like excluding points with no service or no population. Each option for output in coverpts may activate multiple actual columns, such as separate latitude and longitude columns if the study point coordinates are selected.

TVStudy can now output maps as images, but the option only appears if TVStudy detects an available version of the GhostScript software installed. The user needs to install GhostScript, then manually create a symbolic link in TVStudy's lib/ directory to the actual "gs" command wherever it is located. Note that image maps will only be generated from a scenario that has exactly one desired station.

Changes have been made to attribute options and behaviors for map output files. Additional attributes are now included in both the points map file and points CSV file, including ground elevation, receiver height (in points study mode), and land-cover and clutter types (when clutter adjustments are being applied). When the output coordinates are at the cell center in the points file, the study point coordinates will automatically be included in the file as attributes.

Changed the report and CSV labels to "Service Area" instead of "Noise-Limited", since that can now be something other than a noise-limited contour. If the record is being studied in unrestricted mode, those columns are blank or say "(unrestricted)" with no numbers.

Individual Census point information can now be included in the detail cell file. If enabled, following each "P" record describing a study point is a list of new "C" records each describing one Census point used in defining that study point. The "C" records include the Census block ID (a unique identifier
in each country’s Census data that can be used to match other Census data attributes), the population, and the household count for each Census point. Note the Census point information is currently not saved in the study engine cache files. As a result, if a detail cell file is requested, even when study points and field-strength calculation results are reloaded from cache, the study engine must still repeat the Census data search queries to reconstruct the point lists. This significantly reduces the performance benefit of caching; however, those repeat queries will occur only when a detail cell file is requested and the option is enabled.

Site number for desired DTS transmitters are now included in cell file outputs, following the desired source key. The column is always present, but is empty if the record is not a DTS desired. Additionally, the site number for each DRT is now included in the sources section of the cell file outputs.

Fixed the rules summary printout to show FM study rules correctly.

Study Editor, Parameters, and Templates

Fixed problems throughout the study setup logic where channel range was not being checked, incorrectly allowing some records on out-of-range channels to be added to a study.

Added a "Rename..." item to the Template menu in the Template Manager. This allows templates to be renamed even after they are locked.

Added NLCD 2011 data as an option for clutter adjustments.

Major improvements have been made to the antenna pattern editor, allowing matrix patterns to be fully edited including converting a non-matrix pattern to a matrix (or vice-versa), adding and removing pattern slices, and changing the azimuths of existing pattern slices.

Fixed bugs in the scenario editor. When the filtering menus at the bottom of the window were used, the filter applied to the visible content of the table; however, the filter was not applied when a menu item or button was used. The requested action would thus be performed on a different record than appeared to be selected.

Fixed bug in elevation pattern handling that caused the pattern mirroring and built-in electrical tilt detection features to work incorrectly when the elevation pattern maximum was not at 0 degrees.

Added an option to derive a horizontal-plane pattern for contour projection if a record has a real elevation pattern and mechanical tilt, or has a matrix pattern. Also added a new option in the output file settings to write horizontal plane patterns to CSV files.

Added an option in the "Add Many" scenario-building dialog to search the baseline record table. When baseline is selected, search options for service and country are available but selecting anything other than US full-service DTV will yield an empty result in current datasets. The service and country criteria are enabled because future LMS imports may contain baseline records in other countries or with other service codes.
TVStudy now supports facility ID values less than or equal to 0. Facility ID values in most situations can now have any value. Two exceptions are in a pair study baseline scenario and in the CDBS/LMS TV baseline record tables, facility IDs must still be greater than 0.

Changed the logic for retrieving call sign, city, and state from CDBS/LMS, including FM. First try the facility table, if the field is blank there, fall back to the application or application_facility table.

In the study editor "Study" tab, there is a new menu to pick the propagation model used when running that study. Currently the options are "Longley-Rice", "FCC curves", and "Free space". New models can be added, as described in the TVStudy source files (look in the "src/model/" directory at the files "model.h" and "model.c"; comments in those files will guide you from there). When a new model is added in those code files, it will automatically appear in the UI. The Java application queries the study engine for a list of available models when it starts up, so it is necessary to restart the Java UI to load new models.

When a new DTS record is created from a non-DTS record, the non-DTS record is used to set the DTS reference facility as well as the DTS "parent" properties. Previously when that was done, the reference facility was changed to digital. Now it is left alone, which means you can create a DTS record with an analog reference.

An editable DTS record can now have a sectors boundary area.

The parameter for mirroring on generic patterns has been expanded from a simple yes-no option to a menu with choices "Never", "Always", and "Propagation only."

Changes have been made to the XML import code to improve performance and to fix a number of bugs. When records need to be retrieved from a data set by record ID search, rather than doing lookups one record at a time while parsing the XML, record IDs are accumulated then all retrieved in a single batch query at the end. Imports in which a large number of records need to be retrieved, especially from LMS data, are now dramatically faster.

Added better reporting messages following an XML import during which no errors occurred but nothing was successfully imported. The message will indicate if the XML file did not contain a recognized structure, or if all records were ignored due to being an incompatible type (such as FM when importing into a TV study).

In the scenario editor, it is now possible to include the same record more than once as long as each appearance is replicated to a different channel.

Fixed an issue causing the Site # tabs in the source editor for a DTS station to be out of numerical order.

The single-record search UI layout has been re-arranged (the "Add One" and the study-build "wizard" windows). Mostly this is a cosmetic change and all the UI elements still function as before, but there is a new option to search by country, and country is now shown in the record table.
The study and template editor UI layouts have been changed. Parameters are in their own tab, and parameter sections are picked from a drop-down menu rather than tabs. In the study editor, the "Study" tab still exists to show those settings that can’t be handled as parameters.

The "Add Many" search dialog in the scenario editor now has the ability to save search criteria for later re-use.

When importing station data from XML, up to two station data sets can now be selected for resolving record elements that reference a data set record by ID. This allows, for example, selecting one LMS and one CDBS data set so either type of ID can be resolved, when the content of the XML being imported is mixed or unknown. Otherwise import behavior is unchanged; if a by-reference element cannot be resolved it is not imported but the rest of the import continues.

All file open and save dialogs are now configured to require an appropriate file name extension; the "All Files" choice is no longer available in most cases. For example, when importing XML data, only files with names ending in ".xml" can be chosen. Likewise, on XML export, the file created will always end in ".xml" regardless of whether or not that is actually entered in the file name field.

Default parameter values for the rule-extra-distance ERP table have been modified slightly. The ERP for the low-to-mid ERP break is changed from 0.25 kW to 0.2 kW. Note this change applies only to the default template. Existing studies and templates will not be affected by the change; it will only take effect for templates created after the update.

Added a new option parameter to disable the rule-extra-distance ERP table and instead use the maximum desired signal calculation distance as the rule-extra-distance for all searches. This is meant to be used with alternate service area methods, or altered service contour levels, that result in service areas substantially larger than standard FCC contours. Particularly, this option is needed to avoid rule-extra-distance failures when using the unrestricted service area mode. Note this option should never be set in a template used to create a TV IX Check study. Doing so would result in frequent study build failures because the additional stations appearing in undesired searches cause the scenario-generation tree to become unmanageably large.

Changed the behavior of TV contour distance limit parameters. These now apply to all contours including Longley-Rice, and they apply when the contour is projected rather than as an overlay during point analysis, so the contour actually appears truncated in map outputs.

The new maximum desired signal distance parameter is checked in all cases including contours and geographies. Points that fall inside a service area but beyond the maximum distance will still appear in outputs but with a -999 field strength indicating no calculation actually occurred.

Command line utility

TVStudy 2.1 includes a command line utility called “ptelev” that makes some of the TVStudy internal functionality available from the command line. It reads a configuration file at "lib/ptelev.conf" and otherwise is run with the “lib/ptelev” command. See page 18 for more information on this utility.

TVStudy 2.1 also provides a simpler command line utility called “nadcon” that allows for coordinate conversions only using a minimum number of files. No support is provided for this utility.
Underlying Data

Status feedback is now provided during long database updates, such as the one for TVStudy 2.1.

Added a households field to all population tables. Household values and tallies appear in all CSV and cell output files immediately following population. Population data has been re-processed to add household counts and will be reimported when TVStudy is updated.

After a new database installation or after some major upgrades (including TVStudy 2.1), TVStudy will search for XML files located in the xml/ directory and attempt to import those as templates or geographies.

Optimized the terrain cache memory management algorithm for improved behavior. In the previous version, memory use could become excessive under some conditions, leading to memory compression and virtual memory swapping. Out-of-memory errors in environments with no swap space should now be much less likely.

Improved the caching algorithm used for land-cover database lookups. The previous algorithm was seriously deficient once the cache reached the "full" state, causing very long run-times for large-area studies with clutter adjustment applied. The new algorithm is much better, although there is still a 20-30% performance penalty when applying clutter adjustments in a large-area study (previously that was 300-500%).

TVStudy 2.1 comes with a utility to convert 1/3-second terrain for use in TVStudy. This feature is currently unsupported.

Other

Added DTS self-interference analysis, activated with new parameter, and added supporting parameters. Self-interference will appear in detail report and CSV files as a separate "undesired" line. In the DTS self-interference analysis, all signals outside time arrival limits are RSS to a composite undesired signal rather than being checked individually for D/U failure. DTS self-interference analysis is output to the detail cell file using new record formats S and DS.

Improvements have been made to the handling of insufficient-memory situations. If the study engine does abort for that reason, the error message is now visible in the run window. However, that should never occur now because the UI asks the engine for a report on memory at startup and if there isn’t enough, the UI won’t even let study runs be started at all. You can continue editing in the UI as much as you like, but you can’t run anything.

Fixed a bug where a study point result code could incorrectly be the 11, 12, or 13 value indicating a propagation model error when the result was not in doubt due to the error. Under some conditions, the error flag could be set due to an undesired-signal calculation on a point that did not have service due to desired signal below threshold, with no error on the desired-signal calculation. In that situation the undesired-signal error is irrelevant and should not affect the result status.
Fixed a bug where changes to the rule-extra-distance parameters did not always take immediate effect. Sometimes the actual distances used in database searches would not update until the study was closed and re-opened.

Fixed a bug that could cause incorrect use of invalid cached calculation results after certain types of concurrent edits (changes by two different applications sharing the same database installation).
Change Log

Differences Between 2.2 and 2.1

If a DTS record in CDBS or LMS has no reference facility, a warning is shown and a "dummy" reference record is created using the reference coordinates, minimum height, and 1 kW ERP, so the contour should never extend beyond the radius distance limit.

Added an option for interference-check studies to include baseline records as protected facilities when studying an LPTV.

Added Canadian 2016 Census data. Note the default parameter setting did not change, that is still 2011.

Added service level to the sources map file attribute data.

Added new columns in parameters.csv showing the original record’s antenna ID and rotation for replication records (the new columns are always blank on non-replication records). The existing antenna ID column is now always blank, and the rotation always 0, on replication records. There was no need for any new fields in the database or cache files; the entire original record is available so those values can be taken directly from that record when writing the parameters file. The previous behavior was to copy the antenna ID to the replication record itself. Note that the new original-value columns will always be filled in regardless of the replication mode; previously the antenna ID was copied only in equal-area mode.

Added a new output file option for interference-check studies. When the baseline contour extension check is done, the contour being checked may be written to a CSV file for post-processing. Each row in the file reports the status of one point along the contour (or contours in the case of DTS) that was checked versus an enlarged baseline contour. Columns are the azimuth, distance, latitude, longitude, HAAT, ERP, and a flag indicating if the point fails the test (is not inside the enlarged baseline contour). Note that as of TVStudy 2.2, the file is only created if the baseline contour check is actually performed. If that check is turned off by parameter, or if there is no baseline record to check, the contour file will not be created.

Fixed bugs involving output options meant for grid mode, e.g. use cell center, exclude no-service cells, etc., which would cause crashes and failures when selected in points mode.

Fixed a bug in the output configuration dialog. After deleting a saved configuration, the dialog could not be closed with the OK button and only the Cancel button would work.

Fixed an issue in the Run Manager window where internal status messages (starting with ‘$$’) would sometimes appear in the run log. These messages should not have been displayed.

TVStudy no longer shows service area settings in the record editor when it is opened from a search dialog. The settings now only appear when the record editor is opened from a scenario editor.

Land-mobile checks are now performed for a channel 21 proposal; however, any issues are not reported as failures, just as advisory messages in the output report.
When deriving an azimuth pattern for contour projection in cases of mechanical beam tilt, the pattern can be computed using vertical angles to the radio horizon on each azimuth. Various labels and messages appropriately changed so this is no longer referred to as an "h-plane pattern" since it may not necessarily be that; it is now referred to as a "derived azimuth pattern".

Coordinate input fields with separate degrees, minutes, and seconds input will now recognize values entered in the degrees or minutes fields with a fractional part, and expand the value into minutes and/or seconds as needed.

Fixed bugs in parameters.csv output causing values for household totals to be transposed between columns.

In an FM study involving 53rd- or 54th-adjacent channel rules, the map file outputs for worst D/U and margins are no longer affected by those rules unless both desired and undesired signals are above the threshold (91 dBu). In other words, the signal threshold is treated as a logical condition determining if the rule applies at the study point. Just like other logical conditions such as culling distance, if the conditions are not met the rule does not apply and has no effect on any output.

Please note that while this version produces interference studies for low power television (LPTV) stations assuming all post-auction transitions have been completed, it does not accurately account for full power and Class A television stations’ pre-auction and post-auction channel assignments during the transition period. OET expects to release another updated version of TVStudy in the coming weeks which will enable LPTV stations to conduct interference analyses that correctly consider pre-auction channel assignments as well as post-auction assignments. LPTV stations should wait for this future release before using TVStudy to conduct interference analyses regarding potential new channel assignments.
Differences Between 2.2.1 and 2.2

Viewing a replicated DTS baseline record in the search dialog now shows a note "will replicate to D##" below the channel field.

In the record editor, when viewing a replicated DTS record, the note indicating original channel now appears on individual transmitter tabs as well as the parent tab.

The "Add Many..." function in the scenario editor now correctly applies replications for DTS baseline records.

Wireless study mode lower frequency limit changed to 50 MHz.

Added support for emission mask field on Class A records in the LMS baseline table. Note that LMS dump files from before April 20 will no longer import into TVStudy.

Fixed random false positives on 1% baseline contour test in TV IX Check studies.

Fixed search dialog option to restrict by service type in baseline table searches.

Fixed failures of azimuth pattern lookup for DTS baseline records.

Fixed possible incorrect column typing in table used to index the cache of past interference-check studies run through the servlet API. If the problem occurred in a particular installation, it would cause past run links to show the correct date but the time would always be 12:00:00.
Differences Between 2.2.2 and 2.2.1

Changed the interference-check wizard build logic to support pre-transition and transitional studies. The previous option to categorically exclude records dated before the baseline effective date on a different channel than the station’s baseline has been removed. A new option "Protect records not on baseline channel" allows control over whether or not such pre-baseline channel records can be included as protected stations. For study of full service and Class A records, the default is no; for LPTV the default is yes. Including pre-baseline records as undesireds is now automatic. If the protected record is a pre-baseline record, then other pre-baseline records are included but baseline records are excluded. Otherwise, the opposite occurs. The previous option "Protect baseline from LPTV" is still available, by checking both "Protect records not on baseline channel" and "Protect baseline from LPTV" options when studying an LPTV record, to do a transitional study in which the LPTV must protect all current and future facilities.

Added a new option and parameter to the interference-check wizard that controls interference-check behavior for protection of LPTV stations when studying a Class A record. The parameter is a date which sets the end of the 90-day filing window; the option is a UI check-box "Protect LPTV from Class A". If a Class A study record is before the date, by default LPTV stations are not protected, but the option can be selected in the UI to protect them. If the Class A record is after the window end date, the LPTV protection option is always selected and cannot be deselected. Note the date parameter has no default value, if it is not set then the LPTV protection option is available to be selected but is not selected by default, but that it is being set to shortly after the end of the 90-day filing period in the Interference Check template.

Changed the data type of the latitude and longitude seconds fields in the LMS baseline table to floating-point so fractional seconds will be supported on new LMS imports. Added support for the electrical_deg field in the app_dtv_channel_assignment table. Added support for the foreign_station_beam_tilt field in the app_antenna table.

Made changes to AM station search in interference-check study. Separate searches are now conducted for ND and DA stations, and search distances are now in template parameters.

The terrain profile resolution in interference-check study output is now reported in kilometer spacing rather than points per kilometer.

Added a new parameter to set HAAT radial count separately for LPTV.

Overhauled the automatic XML import logic. Files in the xml/ directory are now checked and indexed every time the application is launched. Any new or modified files in the directory are immediately imported. TVStudy will initially re-import everything in xml/, but after that it will only import changed files. If a file name has never been seen before, it will be imported regardless. If a file name is in the index and either the modification time or file length has changed, it is re-imported.

User records can now be deleted. In any record search dialog e.g. View Station Data there is now a delete button below the search results list. When a saved user record is selected, that button activates and will delete the record.
Change Log

Differences Between 2.2.2 and 2.2.1

Improved station data import code. When importing, a directory containing the extracted text files can be selected as before, or the downloaded ZIP file can be selected directly. The import code now has some ability to detect an LMS download in a previous format and set the internal import version accordingly so older LMS downloads can usually still be imported.

Added a feature to automatically download LMS, CDBS, or CDBS FM station data and import directly from ZIP file. The ZIP file is stored in a temporary location and deleted once the import is complete. Station data imported by this method is flagged as a download, and will automatically be deleted the next time new data is downloaded. To prevent a past download from being automatically deleted, give it a specific name in the station data manager; this will clear the download flag.

Added a cancel button to the station data download or import message dialog.

Included a new command-line utility for database management. This allows database management and station data download and import to be performed from a command-line environment.

Corrected an issue in azimuth pattern lookup. The pattern lookup code in the study engine did not deal with pattern rotation values outside the range 0 to 360, causing incorrect results if such rotations were entered. The UI allowed rotations from -360 to 360. The lookup code, UI code, XML and CSV parsing code, etc., now all do a modulo-360 operation to ensure both rotation and lookup azimuth values are always in legal range.

Corrected an issue in the interference-check baseline search logic, that caused it to include Canadian and Mexican baseline records when the include foreign stations box was not checked.

Fixed a problem in the record editor when creating a new DTS record. Starting from a completely blank editor state selecting DTS service would result in a reference facility sub-record with undefined service that could not be edited. Now the reference facility will default to digital TV rather than undefined. However, the reference facility service still cannot be edited, so if you want an analog reference facility, first select analog TV service in the initial blank editor, then select DTS.

Fixed header misalignment and numerical precision issues in parameters.csv output.

Fixed a bug where an uncaught exception would occur when clicking the run button on an empty study (no scenarios). Now a warning message is displayed indicating that the study cannot run because it has no desired stations.

Fixed custom rendering in tables that color-code text so the text stays readable in a selected row regardless of highlight color.

KML map output of coverage points now sorts the points into folders according to the analysis result code, allowing related points to be manipulated more easily in mapping software.

Added a "Defaults" button in the image color map editor to restore default colors.

Added a properties file "lib/config.props", allowing various configuration settings to be changed without a software update. To make changes just quit, edit or replace the file, and relaunch. See the config.props file for further details, it includes comment lines describing the properties.
Differences Between 2.2.3 and 2.2.2

In an effort to resolve some of the data interoperability problems that some users encountered between previous upgrades, TVStudy now versions much of the data it uses. This means that the data files need to be replaced, and TVStudy 2.2.3 and newer will fail to open if unversioned or incorrect versions of the underlying data files are detected. Among other things, this should help prevent issues where incorrect file placement could result in the database having to be Uninstalled and Installed.

Altered the TV Interference Check mode to reduce the number of scenarios by skipping the creation of scenarios in which interference is never caused. In certain test cases, this improved performance by reducing build and run times from hours to minutes. To benefit from the increased performance, users should recreate any TV Interference Check studies they wish to evaluate.

The TV Interference Check study wizard will now only allow LMS station data imported by version 2.2.3 or later to be used. This ensures that all new features and capabilities are correctly supported.

Records for channel sharing guest stations in LMS are now excluded from all record search results made from any context, including "View station data" and the TV Interference Check mode, and only the host station’s records will appear. Since guest stations are represented by the records of their channel sharing host facilities in terms of analysis in TVStudy, it will look to those host records and ignore guest records which are not relevant for the analysis.

During a TV Interference Check study build, records for channel sharing host stations that are on the station’s pre-transition channel when that is not the same as the station’s baseline channel are now treated as pre-transition non-baseline records regardless of date. This means that if a channel sharing host station files a license to cover application to implement a channel sharing agreement on its pre-transition channel, that license record will not be erroneously included in post-auction analyses.

Changed the logic for computing the RSS for an undesired DTS with respect to error handling. Previously, an error on any one DTS transmitter would apply to the entire RSS and cause the selected error-handling behavior to be triggered. Now an error will only cause that particular transmitter’s signal to not be included in the RSS, unless error handling is set to disregard. As long as at least one signal is added to the RSS, the D/U check will occur.

The "Exclude all APP records" and "Exclude all pending records" options have been restored to the TV Interference Check wizard. Those options, along with the option to include non-US records, the list of record ARNs to exclude, and new abilities to list additional user record IDs to include in a study or exclude baseline records if a CP is available, all appear in a secondary window opened from an "Include/Exclude" button. The new record inclusion ability will add those records to the study-building search results whenever they match the search criteria (channel relationship and distance).

Building a TV Interference Check study for a record with facility ID less than 1 no longer fails.

Fixed a bug in TV Interference Check study build where the AM search would fail with a "missing parameters" error if the study record was replicated.
In TV Interference Check study runs, calculations of field strength at FCC monitoring stations now use FCC Curves instead of Longley-Rice and the HAAT calculation along that radial is reported.

Elevation pattern information and tilt parameters are now included in the TV Interference Check report output.

In a TV Interference Check study, if the study record zone is undefined and the record is on a VHF channel, the check of ERP vs. HAAT is not performed and a message is included in the report.

Fixed a bug affecting all of the study build wizards; if the study name field contained bad characters, the "Build" and "Build & Run" buttons would not function and no error message appeared.

The defaults for cell size and profile resolution, the values for the AM station search, the LMS baseline effective date, and the post-auction filing window end date are now in the configuration file "config.props" rather than template parameters. The baseline effective date is now used to set the sequence date on LMS baseline records, resolving several issues with handling of those records in a TV Interference Check study build.

Changed the options and ordering in the station data selection. The "Most recent LMS TV" option now appears first in the menu, followed by "TV user records", then by specific LMS imports, then the "Most recent CDBS TV", then specific CDBS imports, then wireless and CDBS FM options in a similar succession. The "Most recent LMS/CDBS TV" option has been eliminated.

Changed the behavior of the profile increment box in the TV Interference Check wizard. If a value greater than 1 is input, the wizard assumes that the value is in points-per-kilometer rather than profile increment, and inverts the value accordingly.

In the record search windows (the "View station data" window and all of the study build wizards), additional information may now appear for station data search results, in the form of a tooltip appearing when hovering the mouse over the call sign field of a record. That field will be colored blue if additional information is available. Currently that can show the record's sequence date, licensee name (LMS only), and a notation if the record is a channel-sharing host (LMS only).

In the record editor, the file number field no longer has a length restriction, nor is it translated to upper-case. This allows that field to be used as a short general-purpose comment, which is particularly useful for user records.

When editing DTS records and adding a new site, values can be copied from station data records found by search or from another site tab. Replacing the "Add Site" button is a menu that will always have items "Blank" and "Search", plus if there are other sites in the record, those are listed as available to be copied e.g. "Copy Reference", "Copy Site 1", etc.

In the wizards, including for TV Interference Check, when selecting a DTS baseline record that is flagged for auto-replication, the behavior is now changed to make it possible to study the record on its pre-baseline channel, meaning without any replication. Instead of applying the auto-replication "behind the scenes," now when the record is selected, the replication fields in the UI are automatically populated with the baseline-designated replication channel. If those settings are not...
changed, the baseline-designated replication will occur. However, if the replicate box is unchecked, there will be no replication and the record will be studied on its original channel. The replication channel may also be changed to something other than the baseline-designated channel.

Fixed a bug in the automatic replication of DTS baseline records; elevation patterns were being used in the initial study run but then were inadvertently erased and would not apply to subsequent runs.

Fixed a bug causing the size and position of study manager windows to not be saved and restored.

Expanded the output file option for TV Interference Check studies; when the “Failed scenarios only” option is selected, it is now possible to also output all MX scenarios, whether those fail or not.

Refined the margins CSV output file for TV Interference Check studies. Zero-population study points can now be excluded when generating that output. Optionally, the output can list every individual study point considered, instead of aggregating points within 1-degree radials.

Added the ability to output ShapeFiles or KML files for the baseline, baseline plus 1%, and proposal contours. The CSV files continue to reflect the baseline plus 1% and proposal contours only.

Added the ability to change the reporting logic for normal study detail reports and CSV output. Previously, an undesired station was listed only if the interference area was greater than 0. Now an undesired can be listed even with zero interference, if it was actually tested against a desired signal at any study point. Only undesireds that were culled from all study points are not listed.

Fixed bugs in the "Add Many..." window; the check-boxes for prefer operating and desired only were not functional. They could be checked and unchecked, but had no effect on the search query.

Resolved an issue where creating KML output for large study areas could take a very long time at the end of the run, long enough to trigger a timeout in the UI causing the run to be aborted. The file write operation should be faster now, but if a run does take some time, keep-alive messages are also sent to the UI during the process so it will not time out.

Added the ability to export elevation patterns as XML.

Fixed a bug that caused the Image map output to be shifted to the right by one cell.

Fixed a bug in the color map editor; attempting to add more than 20 colors caused an exception.

Created a new map image output option, "Desired margin with IX". By default, this shows cells with interference in a dark red color, otherwise it maps the desired signal margin using slightly lighter colors than the existing desired margin option. The colors are all adjustable through the normal UI.

Aborting a pair study run now works correctly, either before the run starts, or at any time after it starts.

Fixed a bug that caused an unknown column error when searching generic station data sets.

Fixed a bug that caused a null pointer exception when importing XML into a generic station data set.
Fixed a bug preventing generic station data sets from being created; the attempt would fail with an error about a column that did not have a default.

Fixed a bug in the geography editor that could cause the geography key to be appended to the name when modifying a geography.

Made a global change to the entire Java UI; check-boxes and pop-up menus are no longer focusable, which means clicking on those does not take the keyboard focus away from a text field. This prevents mouse-less navigation using only keystrokes, but that was already difficult because buttons were already non-focusable.

Added a small Preferences UI, accessed from the "Help" menu.
Differences Between 2.2.4 and 2.2.3

TV Interference Check studies have been revised. Most notably, there is now an advanced mode, allowing for such studies to be customizable. Additionally, all TV Interference Check studies have a new layout in the Study Manager; only "skeleton" scenarios exist for the proposal and protected stations. This means that the combinations of facilities used to form actual scenarios for evaluation are compiled in the background. Note that these "skeleton" scenarios are never studied as they appear; they are used only to compile the actual scenarios which appear in the TV Interference Check study report. The benefit to this change is that both the proposal and other facilities are much easier to add, remove, or modify.

When saving a user record, the dialog that appears to enter a record comment now also allows two record attributes to be changed: the sequence date and the shared-channel flag. That initial save dialog is the only opportunity to change those attributes; they do not appear in the full record editor. This allows the pre-baseline logic in the TV Interference Check study build code that previously could not apply to user records to now apply.

TV Interference Check studies now indicate records which were deemed to never cause interference and thus were excluded from the larger analysis.

Fixed a bug causing "nan" to appear in the TV Interference Check study report for some percentages.

Fixed a bug causing some wizard-based study builds to fail due to problems displaying warning messages from the build.

A new output file option "TV IX check: Report worst-case IX" will cause the worst-case interference for each protected station record to be reported in the "Report" tab of the run window, even if that does not exceed the maximum percentage to be considered an IX failure.

Changed the messages shown in the TV Interference Check study run Report tab. All IX and MX messages now include the word "caused" or "received" to make clear the direction of interference relative to the proposal. In addition, a section-break message appears between the interference-caused and interference-received sections of the report.

In the TV Interference Check wizard, the "Include/Exclude" button and window have been renamed to the "More" button and window. The checkbox to Include Non-US Records was moved out of the window, and the Cut-Off Date option was moved into it.

In the TV Interference Check wizard, the More window has a new check-box "Exclude all post-transition CP, APP, and BL" which builds a study based on pre-transition conditions. Also in this window, the "Records to exclude" box can now contain lines that are commands to exclude whole groups of records, rather than just individual ARNs. This is spelled out in more detail in the manual.

Fixed a bug in the TV Interference Check build logic, where the proposal baseline might not always have been excluded from the "before" scenario when protecting a pre-baseline channel record.

Fixed a bug in the TV Interference Check study build logic, when the proposal was an LPTV digital flash-cut and the "before" record was the analog license, that record could have been incorrectly
excluded when protecting a pre-baseline record because the logic was incorrectly assuming the "before" would always be a baseline record.

Fixed a bug that was causing the "CP excludes baseline" option in a TV Interference Check study build to be ignored when the proposal record was replicated.

Changed how the TV Interference Check build code handles the test for a potentially-excessive interference scenario count (the "leaf count" error). The test now shows a warning message at the previous threshold, at which it is still likely the scenarios will build and run correctly, although possibly may take quite a bit of time. The test may still abort the build with an error message, however that now happens at a significantly higher threshold at which it is likely the build or run would actually fail. Also, when a message appears, the situation is described as "high MX record count" rather than "high leaf count".

A message will appear in a TV Interference Check study report when the proposal record AMSL height has been adjusted due to the minimum above-ground limit.

Fixed bug causing intermittent "Cannot identify proposal record" errors for TV Interference Check study runs with a replicated proposal record.

Corrected the Canadian border zone line to remove consideration of points in the Atlantic Ocean from the border zone test in TV Interference Check studies. This erroneously caused several Boston area stations to be flagged as requiring coordination when coordination was not required.

Changed the TV Interference Check run logic in the study engine when checking a Class A or LPTV contour for crossing of the Canadian border. Previously, a message appeared in the report only if a border crossing was found. Now, if the proposal is within 300 km of the border, a message will also appear indicating that the contour was tested and does not cross the border.

Improved the message logging and status reporting during automated study builds. In the message log (displayed in the "Run Manager" window and appearing in the log file), messages from the build process now have timestamps matching messages from the study engine. The timestamps on study engine messages are now offset from the start of the build so a single time sequence is maintained throughout the log. The run status message (at the bottom of the "Run Manager" window) will now update appropriately throughout the build process, rather than just saying "Building study..."

Changed the DTS self-interference analysis to allow undesired signals to be F(50,10) instead of F(50,90). A new parameter allows the percent-time basis to be set.

A new map output file may be created when the map file option "DTS self-interference details" is selected and a DTS is studied. The file is called "selfix", and is described in the manual.

Individual station records saved in TVStudy's record format can now have "extended" attributes. These are stored in one SQL text field using a "name=value" format. This allows new attributes to be added much more easily in the future since that does not require changing the SQL table structure. This new mechanism is being used for such things as a flag to identify the proposal record in a TV Interference Check study, to designate a protected record as a pre-baseline, the sequence date, licensee name, the baseline flag, and the shared-channel flag. Note extended attributes are
also preserved in XML export and import. This does not change the XML format; the attribute text is placed in a previously-unused context (the content body of the <SOURCE> element) so this is a fully backwards-compatible change.

Fixed a bug where record attributes were not being saved to XML for DTS records, causing those to lose attributes when saved as user records.

The record editor now has a "Baseline record" check-box which explicitly identifies a baseline record, so that attribute can now be changed on any editable record in a study, or when editing prior to saving a user record. This causes the elevation pattern to be preserved during the replication of a DTS baseline record.

Fixed a possible issue that caused an SQL error about data truncation when saving user records.

The no-service and no-population exclusion options now apply to the composite map output.

Fixed multiple bugs in the "Add Many..." search dialog. The "Prefer operating facilities" option can now be de-selected. Picking a generic data set no longer causes errors. Fixed the center-and-radius search behavior; previously if that option was selected, coordinate and radius values were entered, then the option was de-selected leaving the values as entered, the search condition still applied.

Changed the MX record preference logic used in "Add Many..." searches. The STA record status is now preferred over all others only when the prefer-operating option is selected. When "Prefer operating facilities" is not selected, CP and LIC are preferred over STA.

New search option in the "Add Many..." dialog, "Protected stations". This is the complement to the existing "Undesired stations" search. It adds desired records having a potential received-interference relationship to undesired records already in the scenario, based on the interference rules in the study.

The "Add Many..." dialog now has the ability to search by channel.

Fixed an issue in the study build wizards for Wireless to TV and TV6<->FM studies. Generic data sets could be selected for the build, but since the build code does not support generic data sets, errors would occur.

Fixed an issue causing the "HAAT radial count for LPTV" parameter to appear in FM-only studies.

LMS records in Review state now have a status code of "AMD" and are automatically excluded from TV Interference Check study builds.

Changed how the study engine message log is displayed in the run manager window. This greatly reduces CPU usage by the Java application and may noticeably speed up run times for long study runs that generate a high rate of log messages.

Changed the method for determining available disk space. This should fix problems on systems that have cache and output directories on different disk partitions.
Differences Between 2.2.5 and 2.2.4

Implemented a workaround for an issue with identifying sharing host vs. guest records in LMS. A list of facility IDs is read from a data file identifying full-power and Class A stations that are eligible to be sharing guests. A record with the sharing flag that has a facility ID in that list is ignored as a guest, a record with the sharing flag and facility ID not in the list is a host.

Added a new interference-check study build option to exclude pending applications for new LPTV stations. The default for this option can be set in the preferences.

Corrected the build logic for the interference-check study option to protect pre-baseline records. It now properly excludes post-transition non-license records as undesireds to a pre-baseline desired.

Expanded the check for the Canadian coordination notice during an interference check study run. Full-service proposals between 300 and 360 km from the border are now checked for an interfering contour crossing the border, using the same criteria as the existing checks for Class A/LPTV.

Changed the record status logic for LMS. The pending record status in LMS now appears as APP status in TVStudy for CP applications, but LIC status for license applications. Records flagged AMD (amendments in “Review” status) in TVStudy now come up in searches for APP records, instead of being found when searching for CP or LIC records depending on the underlying record type of the amendment. The interference check study build option to exclude pending records now only excludes pending license records, instead of all pending records.

Changed the MX logic for DRT records. Two DRT records with the same site number are now MX. The backup distance test applied to co-channel DRT records with non-matching site numbers is performed even when otherwise the MX test is only considering facility ID. A DRT is never MX to its parent under any circumstances.

Added a new ability to create folders to organize studies in the study manager window. Use the "New Folder" menu item to create a folder, select one or more studies and/or folders, and use the "Move to Folder" menu item to re-locate. Folders only affect the appearance of studies in the manager window; they do not change the output file directory structure. As such, two studies still cannot have the same name even when located in different folders. There is an option to hide the folder structure, displaying all studies in the original "flat" view.

Content filtering menus now appear in the study manager to restrict the study list by type, template, and default station data.

Added a preference to change the order of two columns ("Type" and "Name") in the study manager. Default is type column first then name column; selection of this checkbox can change the order instead to name column first then type column.

Added contextual pop-up menus to the tables in the study manager, study editor, and scenario editor. Menus open on a right mouse button click, and offer items for commonly-used actions on selected rows in a table, e.g. move-to-folder in the study manager.
Added a "Yes to all" button to the dialog that appears to confirm study deletion when multiple studies are selected.

Fixed a sorting problem in the station data manager window.

Resolved issues with handling of station data imports, downloads, and deletions occurring while other windows with menus to select data sets are visible. All open windows now automatically update when any changes occur to the data sets. The most-recent options in the selection menus will now work correctly in all situations. When a data set is deleted, the set is removed from the visible UI, but the data itself is not deleted until the main database connection is closed. That means queued study builds that have a data set selected that was subsequently deleted will still complete successfully.

The run manager window has been replaced by the "Activity Queue" window. In addition to study runs and builds, other time-consuming processes will now appear in this window instead of blocking the application with a "Please wait" dialog. In particular, station data downloads are now managed by the activity queue.

Fixed UI issue in the user record save dialog; initial keyboard focus is now on the comment text field.

The default station data selection for an existing study can now be edited in the "Study" tab of the study editor. The initial station data selection when creating new general-purpose studies now defaults to "(none)". The "(none)" selection for a study causes the data set to be the appropriate application-wide default, e.g. "Most recent LMS TV".

Record list tables in the scenario editor and various record search dialogs now include a column showing the record sequence date. Sorting logic for the file number column in those tables now includes the file number prefix; previously it sorted only by the ARN.

Added new options to toggle desired/undesired flags in scenario editor Edit menu.

When exporting elevation pattern data to XML format, TVStudy now checks if the pattern complies with LMS requirements and prompts for confirmation if it does not.

Added an additional search option in the Add Many search, "Use only facility ID for MX check". A facility ID match is always considered an MX case, but normally the MX logic will apply backup rules for co-channel MX detection by comparing city and state and/or using a minimum distance check. With the new option selected, the backup rules are disabled and only the facility ID is checked. Note this option is disabled if the "Disable all MX checks" option is selected.

Increased the distances for the rule extra search distance to correct cases of VHF contours extending further than the original distances. 72, 95, 120, and 163 kilometers are now 80, 100, 130, and 178 km. This change is in the default template and the interference check study template.

Broadened the valid range of possible required D/U parameter values in wireless studies to allow values down to -100 dB rather than the previous limit of -50 dB.
Fixed a problem in the study engine code where keep-alive message calls were not being made often enough during very large points-mode studies, causing the UI to time out and abort the run.

Fixed a bug causing an error when a generic data set is selected in the Add Many search.

Fixed a bug in XML export where the extended attribute content was not being filtered to escape XML special characters, leading to various errors on import when such characters appear as part of the attribute content, e.g. in licensee names. Fixed a similar bug in KML map output files; special characters were not being escaped resulting in some KML files that would fail to open.

TVStudy now checks for and ignores duplicate records during XML scenario import, in case manually-edited XML inadvertently has multiple references to the same record. Previously that situation was not detected and would cause an SQL primary-key error when saving the study with the imported data.

TVStudy now reports record IDs for by-reference records that are not found in the lookup data set when an XML scenario is imported.

Fixed a bug causing generic data sets to appear during XML import as options for resolving by-reference records. Generic data sets do not have portable record IDs and cannot be used in a by-reference import/export.

Fixed problems with geography data not being properly updated/deleted when a study is deleted, causing situations where global geographies could not be deleted even though they were no longer used by any study, and study-specific geographies for deleted studies were "orphaned" in an invisible state.

Fixed problems with study duplication. Study-specific geographies in the original study were not being duplicated; those are now correctly duplicated in the new study scope.

In the geography editor during import of data to a point set, a prompt appears for the receive antenna selection to be set on all imported points.

Improved processing of names for saved data, including studies, templates, station data sets, and geographies. In all contexts, a new or edited name is now consistently checked for conflicts with existing names, excessive length, and presence of reserved characters. Previously the checks were inconsistent and in some cases absent, potentially causing errors and unpredictable behavior due to name duplication. In some situations, a name may be modified automatically to make it unique; that is now done by adding a suffix of the form "#NNN" where NNN is a unique database key, but only when actually necessary. The previous "(NNN)" suffix is no longer used.

The MODEL_DATA structure for passing data to propagation models in the C code now includes a field for the clutter type at the study point. Note the clutter type is only defined if clutter adjustment is turned on in the study parameters; otherwise the clutter type will be 0 for all points.

New preferences operation to the servlet API and built-in web interface. Preferences can be set for a standalone servlet installation with an "op=prefs" request.
Troubleshooting

Problems Running TVStudy

Below are some common errors and suggestions for troubleshooting.

• **Exception in thread "main" java.lang.UnsupportedClassVersionError: gov/fcc/tvstudy/AppManager : Unsupported major.minor version 51.0**

 This message or one like it, seen on the command line in Linux, usually means that you have two versions of Java installed, and TVStudy is attempting to launch using the older one. To resolve this issue, remove the older version of Java from your system, using the normal method of removing such software.

• **The database needs to be updated, but studies are currently in use.**

 Assuming your database is not currently in use by TVStudy by either yourself or another user, it is possible the database was left in an unclean state with locked databases. To unlock all of your databases and allow the update to proceed, in the Manage Database window, click “Unlock All,” and then “Update.” The update should complete successfully.

 If the problem is not resolved, you may try to drop the database, as described below.

• **The database is being updated by another application, or is damaged.**

 This can happen when a database update fails. If this happens, the simplest method of repair is to drop the database and rebuild from scratch. To do this, in the Manage Database window, click “Uninstall,” and then “Install.” Click “Open” and TVStudy should open successfully.

 If, after doing the above steps, the database fails to install correctly, you most likely do not have the file structure correct. Ensure that your data/ contains all of the appropriate files and that your file structure matches the ones found on pages 10 or 13, then repeat the steps in the above paragraph.

 The database can also fail to install correctly when TVStudy is running from a location other than the directory which contains the other TVStudy directories such as data/. If so, simply close TVStudy and launch it again from the correct location.

For further help, see the TVStudy FAQ page: https://www.fcc.gov/oet/tvstudy-faq

Contact Information

If you encounter any problems and wish to speak with someone at the FCC about TVStudy, please e-mail Mark J. Colombo at the following address: mark.colombo@fcc.gov
LICENSING INFORMATION

TVStudy

TVStudy was developed by Hammett & Edison and is copyright © 2013-2016 Federal Communications Commission.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
MySQL Libraries

Oracle’s FOSS License Exception Terms and Conditions

1. Definitions.

"Derivative Work" means a derivative work, as defined under applicable copyright law, formed entirely from the Program and one or more FOSS Applications.

"FOSS Application" means a free and open source software application distributed subject to a license listed in the section titled "FOSS License List."

"FOSS Notice" means a notice placed by Oracle or MySQL in a copy of the MySQL client Libraries stating that such copy of the MySQL Client Libraries may be distributed under Oracle's or MySQL’s FOSS (or FLOSS) License Exception.

"Independent Work" means portions of the Derivative Work that are not derived from the Program and can reasonably be considered independent and separate works.

"Program" means a copy of Oracle’s MySQL Client Libraries that contains a FOSS Notice.

2. A FOSS application developer ("you" or "your") may distribute a Derivative Work provided that you and the Derivative Work meet all of the following conditions:

 a. You obey the GPL in all respects for the Program and all portions (including modifications) of the Program included in the Derivative Work (provided that this condition does not apply to Independent Works);

 b. The Derivative Work does not include any work licensed under the GPL other than the Program;

 c. You distribute Independent Works subject to a license listed in the section below titled "FOSS License List";

 d. You distribute Independent Works in object code or executable form with the complete corresponding machine-readable source code on the same medium and under the same FOSS license applying to the object code or executable forms;

 e. All works that are aggregated with the Program or the Derivative Work on a medium or volume of storage are not derivative works of the Program, Derivative Work or FOSS Application, and must reasonably be considered independent and separate works.

3. Oracle reserves all rights not expressly granted in these terms and conditions. If all of the above conditions are not met, then this FOSS License Exception does not apply to you or your Derivative Work.
Apache Xerces Library

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the
Licensing Information

Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NONINFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of Your accepting any such warranty or additional liability.