Revisions to MIMO KDB Publication # 662911 D01 "Emissions Testing of Transmitters with Multiple Outputs in the Same Band"

> TCB Workshop October 9, 2012 Steve Martin

Summary of the Revisions

Clarify that the KDB applies to:

- A single transmitter with multiple outputs or
- Multiple transmitters that are part of a composite system

Revise Directional Gain Calculations for:

- Cyclic Delay [Shift] Diversity (CDD/CSD)
- Spatial multiplexing combined with CDD/CSD or beamforming
- Add new directional gain calculations for:
 - Out-of-Band and Spurious Emissions

Overview of MIMO KDB 662911 D01: Applicability

Applies only to:

- Antenna-port <u>conducted measurements</u> on...
- Devices or composite systems with <u>multiple-</u> <u>transmitter outputs</u> in same or overlapping frequency range (e.g., MIMO)

Applies only to conducted measurements

Overview of MIMO KDB: Main Points

- FCC limits apply to total emissions across all outputs
- Directional gain = individual antenna gain + array gain
 - For mutually uncorrelated signals (e.g., pure spatial multiplexing)
 - Array gain = 0 dB
 - For correlated signals (e.g., beamforming, cyclic delay diversity [CDD], or combination of correlated and uncorrelated):
 - Array gain = $10 \log(N_{ANT}) dB$,
 - where N_{ANT} = number of transmit antennas.

Revision reduces calculated array gain for some cases of: (1) Cyclic delay diversity (CDD)

(2) Combination of spatial multiplexing with beamforming or CDD.

Sidebar: When does directional gain matter for conducted measurements?

When a <u>conducted limit</u> depends on directional gain

- e.g., 15.247 (DTS), 15.407 (U-NII), or Part 90Y: Rules specify reduction in limits if directional gain exceeds X dBi.
- When <u>conducted measurements</u> are used for compliance with a <u>radiated limit</u>
 - e.g., <u>in-band EIRP limit</u> satisfied by measuring conducted power and adding directional gain
 - e.g., <u>out-of-band field strength limit</u> satisfied (in part) by measuring conducted emissions and adding directional gain [New in this revision]

Spatial Multiplexing

Terms

- $N_{ANT} = Number of transmit antennas$
- N_{SS} = Number of spatial streams (i.e., # of independent data streams). Spatial multiplexing occurs when N_{SS} > 1
- Pure spatial multiplexing: Independent data is transmitted on each antenna
 - $-N_{SS} = N_{ANT}$
 - No correlation between Tx outputs \rightarrow Array gain = 0 dB
- Spatial multiplexing combined with beamforming or CDD (correlated techniques) [1 < N_{SS} < N_{ANT}]
 - Previous guidance: Array gain = $10 \log(N_{ANT})$
 - New guidance: Array gain = $10 \log(N_{ANT}/N_{SS})$
 - See variations for cyclic delay diversity in 802.11

Array gain is highest when $N_{SS} = 1$

October 9, 2012

Spatial Multiplexing (continued)

Caution!!!!

- Most devices that use spatial multiplexing also have some transmit modes with no spatial multiplexing (i.e., N_{SS} = 1)
- Highest gain occurs when $N_{SS} = 1$
 - More likely to exceed emission limits when N_{SS} = 1 unless transmit power increases with N_{SS}
- ➔ Be certain to ensure compliance with the lowest value of N_{SS} (usually N_{SS} = 1). The application filing must clearly include a proper justification for the lowest value used.

Cyclic Delay Diversity (CDD) [also called Cyclic Shift Diversity (CSD)]

- A different cyclic delay is added to each Tx output
- Creates array gain unintentionally
- Direction(s) of maximum gain vary with frequency
 - At a single frequency (or over a narrow band), array gain can be ≈ 10 log(N_{ANT})
 - [applies to power spectral density measurements]
 - Broadband array gain < narrowband array gain due to smearing for directional pattern with frequency [applies to power measurements]
- Gain varies with array geometry, cyclic delays, bandwidth, and center frequency

Analysis on next 10 slides is specific to CDD for 802.11

October 9, 2012

FCC Analysis of 802.11 CDD: Two Sets of Cyclic Delays

Short Cyclic Delays

(Table 22-10 of IEEE Draft P802.11ac_D3.0*)

> Short cyclic delays change character for N>5: Multiples of 25 ns vs 50 ns and irregular order

	Delay (ns) for Specified Antenna							
N _{ANT}	1	2	3	4	5	6	7	8
2	0	200						
3	0	100	200					
4	0	50	100	150				
5	0	175	25	50	75			
6	0	200	25	150	175	125		
7	0	200	150	25	175	75	50	
8	0	175	150	125	25	100	50	200

Long Cyclic Delays

(Table 22-11 of IEEE Draft P802.11ac_D3.0*)

* Delays for $N_{ANT} \le 4$ match 802.11-2012

	Delay (ns) for Specified Antenna							
NANT	1	2	3	4	5	6	7	8
2	0	400						
3	0	400	200					
4	0	400	200	600				
5	0	400	200	600	350			
6	0	400	200	600	350	650		
7	0	400	200	600	350	650	100	
8	0	400	200	600	350	650	100	750

October 9, 2012

FCC Analysis of 802.11 CDD: Array Configurations

N _{ANT}	LINE	RECTANGLE 1 or SQUARE 1	RECTANGLE 2 or SQUARE 2	CIRCLE	
cause N _{ANT} ≥ 5	1 2 • • 10 cm spacing				
nd 5 bec acter at l F	1234	4 3	3• 4•		
= 4 a chara	10 cm spacing	1 2 2 17.5 cm x 10.9 cm	1● 2● 17.5 cm x 10.9 cm		
d N _{ANT} hange	12345	4 3 3 • 5 •	4• 5• 3•	3 ² 1	
Analysis includeo nort CDD delays c &	6 cm spacing	1● 2● 10 cm side	1● 2● 10 cm side	5 12 cm radius	
	1 2 3 4 5 6 7 8	7 • 6 • 5 • 8 • 4 •	6• 7• 8• 4• 5•	4• ^{3•} 2• 5• 1•	
	6 cm spacing	1● 2● 3● 20 cm side	1● 2● 3● 20 cm side	6• 7• 8• 12 cm radius	
0 October 9, 2012	All arrays are i	in horizontal plane v	with omnidirectional a	antennas	

FCC Analysis of 802.11 CDD: Methodology

- Wrote MATLAB code to compute directional response
 - 0-360° azimuth and 0-45° elevation
 - "Smeared" patterns over bandwidths of 0 – 80 MHz
 - Center frequencies from 5700-5800 MHz
 - For each bandwidth and center frequency, found peak response (array gain)
 - Found max and median array gain across center frequency range

 $N_{ss} = 1$ for all analysis

FCC Analysis of 802.11 CDD: Maximum Array Gain Vs Bandwidth

FCC Analysis of 802.11 CDD: **Array Gain for 20 MHz Channels**

(qB)

FCC Analysis of 802.11 CDD: Effects of Band Straddling

Decision: No requirement for separate calculation of array gain of band-straddling channels

 Increased gain is offset by reduced power in band and by higher limits in U-NII 3 band

May revisit if we find that power of U-NII 3 subcarriers of split channels are increased

Revised Cyclic Delay Diversity Guidance

Total Directional Gain = Individual antenna gain + Array gain

- To Compute Limits on Power Spectral Density (PSD):
 - Array gain = 10 $\log(N_{ANT}/N_{SS})$,
 - where N_{ANT} = # of transmit antennas and N_{SS} = # of spatial streams

To Compute Limits on Power

- For 802.11 devices:
 - Array gain = 0 dB for $N_{ANT} \le 4$
 - Array gain = 0 dB for channel widths \geq 40 MHz for any N_{ANT}
 - Array gain = 5 log(N_{ANT}/N_{SS}) or 3 dB, whichever is less, for 20-MHz channel widths with N_{ANT} ≥ 5
- For all other devices:
 - Array gain = 10 log(N_{ANT}/N_{SS}), or...
 - Consult with the FCC, providing details of specific cyclic delays, channelization, signal bandwidths, and antenna configurations.

Be certain to ensure compliance with $N_{SS} = 1$

October 9, 2012

Need for Array Gain Calculation for Out-of-Band (OOB) and Spurious Emissions

- Applies only when <u>conducted measurements</u> contribute to proving compliance with <u>radiated</u> <u>limits</u>
- Motivation: KDB Pubs. 558074 (DTS) and 789033 (U-NII) now permit OOB & spurious compliance to be demonstrated by combination of:
 - Cabinet radiated measurements and
 - Antenna-port conducted measurements
 - Radiated emission = measured conducted emission + directional gain + conversion to field strength

New Guidance on Array Gain for Out-of-Band (OOB) and Spurious Emissions

- Directional gain = individual antenna gain + array gain
- Array gain =
 - 10 log(N_{ANT}) for narrowband lines such as might originate from a clock or local-oscillator, including harmonics;
 - The value applicable for in-band PSD measurements, at all other frequencies.

These array gain values are conservative. Use radiated measurements at/near frequencies where conducted tests do not show compliance.

Summary of Revisions to MIMO KDB Publication 662911 D01

Clarification that the KDB applies to:

- A single transmitter with multiple outputs or
- Multiple transmitters that are part of a composite system

Revised Directional Gain Calculations for:

- Cyclic Delay Diversity (CDD) for 802.11 devices
- Spatial multiplexing when combined with CDD or beamforming
- New directional gain calculations for:
 - Out-of-Band and Spurious Emissions

Applies only to conducted measurements

October 9, 2012

