

Revisions to MIMO KDB Publication # 662911 D01

"Emissions Testing of Transmitters with Multiple Outputs in the Same Band"

TCB Workshop April 10, 2013 Steve Martin

Overview of KDB 662911

KDB Publication 662911 consists of three documents.

They apply to unlicensed and licensed devices.

- # 662911 D01 Conducted output emission measurements (Revised)
 - How to sum emission measurements across output ports
 - How to compute directional gain (including array gain)
- Appendix I to 662911 D01 (separate file in draft KDB section): New Draft Technical Report FCC/OET 13TR1003, "Directional Gain of IEEE 802.11 MIMO Devices Employing Cyclic Delay Diversity".
 - Provides technical basis for array gain formulas for IEEE802.11 CDD
- # 662911 D02 Conducted and radiated emission measurements for devices driving cross-polarized antennas

KDB Changes: Summing Spectrum Measurements

Alternatives for measuring

- In-band power spectral density and
- Out-of-band and spurious emissions.
- Measure and sum spectra across outputs

- Measure and sum spectral maxima across outputs
- Measure and add 10 log(N_{ANT}) dB

KDB Changes: New Gain Formulas

New formulas for directional gain with spatial multiplexing where antenna gains are not equal

Option 1: Substitute maximum antenna gain into formulas for equal antenna gains

Option 2: Applies if each transmit antenna can be driven by only one

spatial stream

 $DirectionalGain = 10 \cdot \log$

 $g \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$

where

 N_{SS} = # spatial streams of data;

 N_{ANT} = total # of antennas

 $g_{j,k} = 10^{G_k/20}$ if the kth antenna is being fed by spatial stream j, or zero if it is not;

 $\boldsymbol{G}_{\boldsymbol{k}}$ is the gain in dBi of the kth antenna.

Equivalent to 10 $\log[(10^{G_1/20} + 10^{G_2/20} + ... + 10^{G_N/20})^2 / N_{ANT}]$ if one spatial stream

Option 3: Applies if a transmit antenna can be driven by more than one

spatial stream

 $Directional Gain = 10 \cdot \log$

 $\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \sqrt{P_{j,k}} \right\}^{2}$ N_{ANT}

where

 $P_{j,k}$ is the relative normalized power (in linear terms, not decibels) of spatial stream j feeding the kth antenna, normalized such that

$$\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} P_{j,k} \right\} = N_{ANT}$$

Note: $P_{j,k} = 0$ if spatial stream j does not feed the kth antenna.

KDB Changes: Directional Gain for Out-of-Band and Spurious Measurements

Revised section: "Directional Gain Calculations for Conducted Out-of-Band and Spurious Measurements"

- Refer to methods used for in-band gain (except for narrowband lines) Incorporates special cases such as unequal antenna gains, spatial multiplexing, cyclic delay diversity, etc.
- Clarification: Directional gain calculations for out-of-band and spurious emissions are <u>not</u> required for:
 - Radiated measurements
 - Conducted measurements used to demonstrate compliance with a relative out-of-band limit
 - Conducted measurements, if limits are specified as absolute conducted power levels (rather than EIRP, ERP, or field strength) in a given bandwidth with no required reduction based on directional gain
 - Applicable to many licensed devices
 - Must still sum emission measurements across outputs

KDB Changes: Formatting & Clarification

Formatting

- Added paragraph and heading numbers
- Added Table of Contents

Clarifications

- KDB also applies to hosts with multiple modular transmitters in same band
- Requirement to sum outputs:
 - Sum in power units; or equivalently,
 - Sum in voltage-squared units
- General restructuring and clarification

KDB Changes: New Appendix I for 662911 D01

Technical Report FCC/OET 13TR1003:

- "Directional Gain of IEEE 802.11 MIMO Devices Employing Cyclic Delay Diversity"
- Provides technical basis for formulas for array gain of IEEE 802.11 transmitting with Cyclic Delay Diversity.
- Draft Comments welcome through draft KDB publication system!

April 9-10, 2013 TCB Workshop 7

Coming in the Future????

Possible changes to array gain calculations for closed loop beamforming

- Slightly lower broadband array gain
- Scope will be limited based on supporting data
 - Measurement data for indoor com's at 5 GHz

Anyone with relevant data can submit to steve.martin@fcc.gov

This presentation provides only a summary.

See the actual KDB pub for details.

Questions and Answers

Thanks!