Adaptive Antenna Tutorial: Spectral Efficiency and Spatial Processing

FCC Office of Engineering and Technology 7 September 2001

> Marc Goldburg CTO, Internet Products Group ArrayComm, Inc. http://www.arraycomm.com marcg@arraycomm.com

Cellular Technology

- Cellular networks divide a coverage area into multiple "cells"
 - each has its own radio infrastructure and users
- Basis for most two-way wireless services
 - cellular phones (1G, 2G, 3G, ...)
 - MMDS broadband data (Sprint, Worldcom)
 - Wireless LANs
 - LMDS broadband data (Teligent, Winstar, ...)

Motivation For This Talk

- Cellular system design trades off competing requirements
 - service definition
 - service quality
 - capacity
 - capital and operating costs
 - resource requirements including spectrum
 - end-user pricing/affordability
 - coexistence with other radio technologies
- Adaptive antenna technology fundamentally changes the nature of this trade-off

Outline

- Spectral Efficiency and System Economics
- Adaptive Antenna Fundamentals
- Adaptive Antenna Technologies
- Adaptive Antenna Performance Determinants
- Adaptive Antenna Regulatory Issues
- Summary

Spectral Efficiency Defined

- A measure of the amount of information billable services that carried by a wireless system per unit of spectrum
- Measured in bits/second/Hertz/cell, includes effects of
 - multiple access method
 - modulation methods
 - channel organization
 - ♦ resource reuse (code, timeslot, carrier, ...)

"Per-Cell" is critical

- fundamental spectral efficiency limitation in most systems is selfgenerated interference
- results for isolated base stations are not representative of real-world performance

Why Is Spectral Efficiency Important?

- Spectral efficiency directly affects an operator's cost structure
- For a given service and grade of service, it determines
 - required amount of spectrum (CapEx)
 - required number of base stations (CapEx, OpEx)
 - required number of sites and associated site maintenance (OpEx)
 - and, ultimately, consumer pricing and affordability

Quick calculation

number of cells/km² =

offered load (bits/s/km²)

available spectrum (Hz) x spectral efficiency (bits/s/Hz/cell)

Increased Spectral Efficiency

Improves operator economics

- reduced equipment CapEx/OpEx per subscriber
- reduced numbers of sites in capacity limited areas
- reduced spectrum requirements
- Reduces barriers to new operators and new services

Makes better use of available spectrum

- especially important for limited spectrum suitable for mobile applications
- Improves end-user affordability, especially for broadband services
 - cost of service delivery directly reflected in service pricing
 - cost of delivering broadband services higher than cost to deliver voice
 - voice is only 10 kbps of data
 - data quality requirements higher for broadband than voice

Designing For Spectral Efficiency

Spectral/Temporal tools

- multiple access method and data compression (source coding): TDMA, FDMA, CSMA, CDMA, Vocoding (e.g., CELP), MPEG
 - both optimize efficiency based on traffic characteristics
 - compression/source coding can change service definition
- modulation, channel coding, equalization: QPSK, OFDM, Trellis Coding...
 - optimize efficiency based on link quality

Spatial tools (all to minimize interference)

- cellularization
 - mitigate co-channel interference by separating co-channel users
- sectorization
 - mitigate co-channel interference by more selective downlink patterns and increased uplink sensitivity
- power control
 - use minimum power necessary for successful communications

Avenues For Further Improvement

Temporal/Spectral aspects are mature, well understood, well exploited

- no significant future improvements in spectral efficiency here
- proper application is important

Least spectrally efficient aspect of most systems

- omnidirectional/sectorized distribution and collection of radio energy
- Why?
 - Most of the energy is wasted.
 - Worse, it creates interference in the system and limits reuse.

Sectorized Transmission/Reception

- Spatially uniform transmission and reception throughout sector
- Causes interference in nearby cells
- Increases sensitivity to interference from nearby cells
- Cellular "reuse" mitigates this effect by separating cochannel users
- Cost: decreased resources per sector and reduced spectral efficiency
- Tradeoff of quality and capacity

How Do Adaptive Antennas Help?

Adaptive antennas are spatial processing systems

Combination of

- antenna arrays
- sophisticated signal processing

Adapt the effective pattern to the radio environment

- ♦ users
- interferers
- scattering/multipath

Provide spatially selective transmit and receive patterns

Adaptive Transmission/Reception

- Spatially selective transmission reduces required power for communication
- Reduces interference to nearby cells
 - Decreases sensitivity to interference from nearby cells
- Allows reuse distances to be decreased
 - Benefits: increased resources per sector, increased spectral efficiency
- Improved tradeoff of capacity and quality

Comparative Spectral Efficiencies

Air Interface	Carrier BW	Peak User Data Rate (kbps)	Average Carrier Throughput (kbps)	Efficiency b/s/Hz/cell	Comments
Without Adapti	ve Antennas				
IS95A	1.25 MHz	14.4	100	0.08	Source: Viterbi
IS95C	1.25 MHz	144	200	0.16	Source: Viterbi
cdma2000	5 MHz	384	800-1000	0.16-0.20	Source: Viterbi
GSM	200 kHz	13.3	15.2 (13.3*8/7)	0.08	effective reuse = 7
PHS	300 kHz	32	12.8 (32*8/20)	0.04	effective reuse = 20
With Adaptive	<u>Antennas</u>				
PHS	300 kHz	32	64 (32*8/4)	0.21	effective reuse = 4, DDI Pock
GSM	200 kHz	13.3	53.2 (13.3*8/2)	0.27	effective reuse = 2, AC/OEM Trials
IntelliWave FW	A 300 kHz	128	640 (128*2*2.5)	2.1	effective reuse = 1/2.5, Vario Operators

- Adaptive antenna gains are significant
- Adaptive antenna benefits vary with air interface and adaptive antenna type (more on this later)

A Word About Reuse

When talking about spectral efficiency, "reuse" means feasible reuse of traffic resources

Traffic resource examples

- ◆ AMPS (FDMA): 30 kHz carrier
- DAMPS/IS-136 (TDMA/FDMA): 30 kHz carrier + time slot
- GSM (TDMA/FDMA): 200 kHz carrier + time slot
- ♦ IS-95 (CDMA): 1.25 MHz carrier + code
- From previous slide, spectral efficiency of GSM and IS-95 comparable even though IS-95 might use the same carrier in each sector

Outline

- Spectral Efficiency and System Economics
- Adaptive Antenna Fundamentals
- Adaptive Antenna Technologies
- Adaptive Antenna Performance Determinants
- Adaptive Antenna Regulatory Issues
- Summary

Adaptive Antennas Defined

Systems comprising

- multiple antenna elements (antenna arrays)
- coherent processing
- signal processing strategies (algorithms) that vary the way in which those elements are used as a function of operational scenario

Providing

- gain and interference mitigation
- leading to improved signal quality and spectral efficiency

Adaptive Antenna Concept

 Users' signals arrive with different relative phases and amplitudes at array

Processing provides gain and interference mitigation
17
17

Protocol Independence

Fundamental concepts applicable to all access and modulation methods

Basic Uplink Gain Calculation

Signal s, M antennas, M receivers with i.i.d. noises n_i

= M x single antenna SNR

- Adaptive antennas improve uplink SNR by factor of M
- M=10, 10x SNR improvement, examples
 - double data rate if single antenna SNR is 10 dB
 - reduce required subscriber transmit power by 10 dB
 - increase range by 93% with R^{3.5} loss

Basic Downlink Gain Calculation

- Similar to uplink calculation, except dominant noise is due to (single) receiver at user terminal
- With same total radiated power P in both cases

Received Power (Adaptive Antenna) Received Power (Single Antenna)

$$\frac{(\sqrt{P/M} s + \dots + \sqrt{P/M} s)^2}{(\sqrt{P}s)^2} = M$$

- Again, factor of M or 10log₁₀M dB
- M=10, 10 dB gain examples
 - 10 element array with 1 W PA's, has same EIRP as single element with 100 W PA
 - For given EIRP can reduce total radiated power by 10 dB, 90% interference reduction

Interference Mitigation

- Directive gain term generally results in some passive interference mitigation
- Active interference mitigation independent of and in addition (dB) to gain
- Gain and interference mitigation performance are actually statistical quantities
 - Theoretical gain performance closely approached (within 1 dB) in practice
 - Theoretical interference mitigation, ∞ , harder to achieve
 - limited by calibration, environment, number of interferers
 - active mitigation in excess of 20 dB can be reliably achieved for significant interferers

Base Station Architecture

Generic Features

- antenna array
- phase coherent transceiver chains
- automated adaptive techniques to combine (distribute) energy from (to) transceiver chains
- natural application for wideband radios

Architectural Variants

- conventional downlink processing
- analog spatial processing
- narrowband radios
- masthead electronics
- appliqué to conventional system

Antenna Arrays

Wide variety of geometries and element types possible

- arrangements of off-the-shelf single elements
- custom arrays

Array size

- vertical extent determined by element gain/pattern as usual
- horizontal extent, typically 3-5 lambda

Array of eight 10 dBi elements at 2 GHz is about 0.5 x
 0.75 m

- ♦ small!
- conformal arrays for aesthetics

Comments

- Fundamental concept is coherent processing
- Generally applicable to all air interfaces
- Parallel, independent processing on all traffic resources
- Many important issues that are not addressed here
 - estimation/prediction of radio environment (will comment later)
 - processing requirements & architectures (easily > 1Gbps array data rate)
 - performance validation
 - equipment calibration
 - effects of air interface specifics (will comment later)
 - broadcast channel support
 - reliability benefits of redundant radio chains
 - intrinsic diversity of an array (fading immunity)
 - multipath processing

Processing At The User Terminal

- This presentation focuses on adaptive antennas at the base station
- Adaptive antennas can also be incorporated at the user terminal
 - base station and user terminal can perform independent adaptive antenna processing
 - base station and user terminal can perform joint adaptive antenna processing, so called "MIMO" systems, with additional benefits

Fundamental issue is an economic one

- incremental costs at base station are amortized over many subscribers
- incremental costs at user terminal are amortized over one user, solutions must be inexpensive for consumer electronics applications

Outline

- Spectral Efficiency and System Economics
- Adaptive Antenna Fundamentals
- Adaptive Antenna Technologies
- Adaptive Antenna Performance Determinants
- Adaptive Antenna Regulatory Issues
- Summary

Adaptive Antenna Potential

Processing Gain	Operational Significance	
Selective Uplink Gain	Increased Range & Coverage Increased Data Rates Reduced System – Wide Uplink Noise Improved Uplink Multipath Immunity	
Uplink Interference Mitigation	Improved Signal Quality Maintained Quality with Tightened Reuse	
Selective Downlink Gain	Increased Range & Coverage Increased Data Rates Reduced System–Wide Downlink Interference Improved Co–existence Behavior Reduced Downlink Multipath	
Downlink Interference Mitigation	Maintained Quality with Tightened Reuse	

Actual level of benefits depends on implementation details

Comparing Adaptive Antennas

- Predictability and consistency of performance
- Balance of uplink and downlink performance (key for capacity improvements)
 - downlink is generally most challenging aspect of adaptive antennas
 - base station directly samples environment on uplink; generally must infer the environment on the downlink
- Robustness of performance across propagation and interference scenarios
- Performance in non line-of-sight environments
 - "beams" useful for visualization, but not what happen in practice

Cell Sculpting and Switched Beam

Cell Sculpting

- load balancing technique
- sector sizes slowly (e.g., monthly) updated to match offered traffic
- different from other adaptive antenna techniques mentioned here, doesn't affect reuse

Switched Beam

- selects from one of several fixed patterns to maximize received power
- selection problems for low SINR
- moderate gain uniformity/predictability
- less predictable active interference mitigation

Energy Extraction and Fully Adaptive

Energy Extraction

- extracts maximum energy from environment ("greedy")
- infinite variety of patterns
- good performance/predictability in high SINR scenarios, poor in low SINR
- no clear downlink strategy
- Examples: maximal ratio, combined diversity

Fully Adaptive

- incorporates full model including propagation, users, interferers, air interface
- infinite variety of patterns
- consistent gain/interference performance in wide range of SINR scenarios
- benefits at cost of manageable increase in processing

Outline

- Spectral Efficiency and System Economics
- Adaptive Antenna Fundamentals
- Adaptive Antenna Technologies
- Adaptive Antenna Performance Determinants
- Adaptive Antenna Regulatory Issues
- Summary

Adaptive Antenna Performance

Primary determinants

- environmental complexity, including mobility
- air interface support for adaptive antennas ("hooks")
- duplexing: frequency-division or time-division (FDD vs. TDD)
 - issue is correlation of uplink and downlink propagation environments

Capacity increases in operational systems

Application	Capacity Increase	Deployments
FWA, TDD, hooks	20x	1996-present
Low Mobility PHS, TDD, no hooks	5x	1996-present
High Mobility AMPS & GSM (900, 1800, 1900), FDD, no hooks	2-6 x	1993-present

Comparing TDD and FDD

Two-way communications schemes need separate channels for each direction of communication

- Frequency Division Duplex (FDD): directions separated in frequency
- Time Division Duplex (TDD): directions separated in time

TDD

- requires single block of spectrum
- especially efficient where communications may be asymmetric (e.g., data)
- leverages maximum benefits from adaptive antennas

FDD

- requires paired spectrum
- less efficient with unknown or varying data asymmetry
- benefits for extreme long-range operation (10's of km)
- adaptive antennas provide significant benefits

Outline

- Spectral Efficiency and System Economics
- Adaptive Antenna Fundamentals
- Adaptive Antenna Technologies
- Adaptive Antenna Performance Determinants
- Adaptive Antenna Regulatory Issues
- Summary

Co-Channel Issues

 Recall adaptive antennas' high ratio of EIRP to total radiated power (TRP)

- factor of M higher than comparable conventional system
- result of directivity of adaptive antennas

Average power radiated in any direction is TRP plus gain of individual array elements

- EIRP is still worst case directive power
- Regulatory relevance
 - safety/RF exposure considerations
 - coordination of co-channel systems in different markets

Adjacent Channel/Out-Of-Band Issues

- Recall that adaptive antenna gains result from *coherent* processing
- Out-of-band radiation due to intermodulation, phase noise, spurs
 - nonlinear processes
 - reduce/eliminate coherency of signals among PAs' out-of-bands

Result

 ratio of in-band EIRP to out-of-band radiated power is up to a factor of M less than for comparable conventional system

Regulatory relevance

- A per-PA "43+10logP-10logM rule" would result in comparable operational out-of-bands to single antenna 43+10logP rule
- significant positive effect on adaptive antenna power amplifier economics
- may help to foster adoption

Outline

- Spectral Efficiency and System Economics
- Adaptive Antenna Fundamentals
- Adaptive Antenna Technologies
- Adaptive Antenna Performance Determinants
- Adaptive Antenna Regulatory Issues

Summary

Summary

Increased spectral efficiency leads to

- better spectrum conservation
- diversity of services
- affordability of services
- Adaptive antennas is the single best technology for increasing spectral efficiency
- Wide range of adaptive antenna technologies
 - same basic principles
 - wide variations in goals and performances
 - intracell reuse (reuse < 1) possible for certain applications

Proven technology

more than 80,000 deployments worldwide

